深度学习顶级算法-简介

 

Faster R-CNN

Towards Real-Time Object Detection with Region Proposal Networks

其中共享了卷积特征,以提高速度。

实现端到端的网络结构(RPN+RCNN)。

 

关键点定位

 Convolutional Pose Machines

通过序列化网络(用级联小网络实现大网络的定位功能),逐步使定位更精确

优点:在同等甚至更高的准确率下,提高速度,

缺点:训练比较麻烦。

深度残差网络

优点:解决了梯度消失问题,增加网络层数,检测准确率不会降低。

缺点:训练较难

Style Transfer

效果如下图(论文中的图片)

利用CNN,保留物体信息。

级联网络Cascade

这是一种比较通用的思想。主要目的是:在不降低准确率的情况下,大大提高速度。

基本原理:用多个小网络,实现一个大网络的功能,如 关键点定位、实时人脸识别。

基本原理如下图,将前一级网络输出叠加到后一级网络输出,以避免梯度消失,也避免feature消失。

 

DeepFashion

公开了benchmark 服装数据库,包含大量标记,http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html

论文中所用方法FashionNet:结合global+local信息,在多项指标上提高效果。

posted @ 2018-09-29 09:41  xbit  阅读(706)  评论(0编辑  收藏  举报