【Populating Next Right Pointers in Each Node II】cpp

题目:

Follow up for problem "Populating Next Right Pointers in Each Node".

What if the given tree could be any binary tree? Would your previous solution still work?

Note:

  • You may only use constant extra space.

 

For example,
Given the following binary tree,

         1
       /  \
      2    3
     / \    \
    4   5    7

 

After calling your function, the tree should look like:

         1 -> NULL
       /  \
      2 -> 3 -> NULL
     / \    \
    4-> 5 -> 7 -> NULL

代码:

/**
 * Definition for binary tree with next pointer.
 * struct TreeLinkNode {
 *  int val;
 *  TreeLinkNode *left, *right, *next;
 *  TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
 * };
 */
class Solution {
public:
    void connect(TreeLinkNode *root) {
            if (!root) return;
            deque<TreeLinkNode *> curr, next;
            curr.push_back(root);
            while ( !curr.empty() )
            {
                TreeLinkNode dummy(-1);
                TreeLinkNode *pre = &dummy;
                while ( !curr.empty() )
                {
                    TreeLinkNode *tmp = curr.front(); curr.pop_front();
                    pre->next = tmp;
                    if (tmp->left) next.push_back(tmp->left);
                    if (tmp->right) next.push_back(tmp->right);
                    pre = tmp;
                }
                pre->next = NULL;
                std::swap(curr, next);
            }
    }
};

tips:

广搜思路(有些违规,因为不是const extra space)

每一层设立一个虚拟头结点,出队的同时pre->next = tmp

=====================================

学习了另外一种思路,可以不用队列的数据结构,这样就符合const extra space的条件了。代码如下:

/**
 * Definition for binary tree with next pointer.
 * struct TreeLinkNode {
 *  int val;
 *  TreeLinkNode *left, *right, *next;
 *  TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
 * };
 */
class Solution {
public:
    void connect(TreeLinkNode *root) {
            TreeLinkNode *pre;
            TreeLinkNode *curr;
            TreeLinkNode *next_first; // store next level's first not null node
            curr = root;
            while ( curr ){
                // move to next tree level
                TreeLinkNode dummy(-1);
                pre = &dummy;
                next_first = NULL;
                // connect the curr level
                // record the first not null left or right child of the curr level as for the first node of next level
                while ( curr ){
                    if ( !next_first ){
                        next_first = curr->left ? curr->left : curr->right;
                    }
                    if ( curr->left ){
                        pre->next = curr->left;
                        pre = pre->next;
                    }
                    if ( curr->right ){
                        pre->next = curr->right;
                        pre = pre->next;
                    }
                    curr = curr->next;
                }
                curr = next_first;
            }
    }
};

tips:

这套代码的大体思路是数学归纳法

1. root节点的root->next按照题意是NULL

2. 处理root的left节点和right节点之间的next关系

...如果知道了第n-1层的node之间的next关系,则可以得到第n层node节点之间的next关系...

按照这套思路,就可以写出上述的代码。

这里有两个细节需要注意:

a. next_first不一定是left还是right,这个要注意,只要next_first一直为NULL就要一直找下去。

b. 设立一个dummy虚node节点,令pre指向dummy,可以不用判断pre为NULL的情况,简化判断条件。

另,回想为什么level order traversal的时候必须用到队列,可能就是因为没有每一层之间的next关系。

==========================================

第二次过这道题,直接看常数空间复杂度的思路,重新写了一遍AC。

/**
 * Definition for binary tree with next pointer.
 * struct TreeLinkNode {
 *  int val;
 *  TreeLinkNode *left, *right, *next;
 *  TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
 * };
 */
class Solution {
public:
    void connect(TreeLinkNode *root) {
            TreeLinkNode* curr = root;
            while ( curr )
            {
                TreeLinkNode* pre = new TreeLinkNode(0);
                TreeLinkNode* next_level_head = NULL;
                while ( curr )
                {
                    if ( !next_level_head )
                    {
                        next_level_head = curr->left ? curr->left : curr->right;
                    }
                    if ( curr->left )
                    {
                        pre->next = curr->left;
                        pre = pre->next;
                    }
                    if ( curr->right )
                    {
                        pre->next = curr->right;
                        pre = pre->next;
                    }
                    curr = curr->next;
                }
                curr = next_level_head;
            }
    }
};

 

posted on 2015-05-15 11:41  承续缘  阅读(160)  评论(0编辑  收藏  举报

导航