【Trapping Rain Water】cpp
题目:
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
代码:
class Solution { public: int trap(vector<int>& height) { // non valid input int len = height.size(); if (len<=2) return 0; // initial int left_max[height.size()]; int right_max[height.size()]; left_max[0] = 0; right_max[len-1] = 0; // get left_max and right_max for (int i = 1; i < len; ++i) { left_max[i] = std::max(left_max[i-1], height[i-1]); right_max[len-i-1] = std::max(right_max[len-i], height[len-i]); } // calculate the sum int sum = 0; for (int i = 0; i < len; ++i) { int h = std::min(left_max[i], right_max[i]); if (h>height[i]) { sum += h-height[i]; } } return sum; } };
Tips:
1. 遍历,获得每个位置上左边最高的和右边最高的;选择左边和右边比较小的高度,减去该位置的高度,就是可需水量。
2. 注意一些极端case的处理
=================================================
第二次过这道题,思路没有完全记清,稍微捡了一下思路,一次AC。
class Solution { public: int trap(vector<int>& height) { if ( height.size()<3 ) return 0; // left height vector<int> l(height.size(),0); int l_heighest = 0; for ( int i=0; i<height.size(); ++i ) { l_heighest = std::max(l_heighest, height[i]); l[i] = l_heighest; } // right height vector<int> r(height.size(),0); int r_heighest = 0; for ( int i=height.size()-1; i>=0; --i ) { r_heighest = std::max(r_heighest, height[i]); r[i] = r_heighest; } // total trapping water int ret = 0; for ( int i=0; i<height.size(); ++i ) { int h = std::min(l[i], r[i]); ret += h - height[i]; } return ret; } };
tips:
这道题就是一句话口诀:左右短的,减去当前位置高度,等于当前位置可需水量。