【3Sum Closest 】cpp

题目

Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution.

    For example, given array S = {-1 2 1 -4}, and target = 1.

    The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).

 

代码

class Solution {
public:
    int threeSumClosest(vector<int> &num, int target) {
        // sort the num
        std::sort(num.begin(), num.end());
        // return value & min_gap
        int closest_sum = 0;
        int min_gap = INT_MAX;
        // from two sides to mid
        for (std::vector<int>::iterator i=num.begin(); i!=num.end()-2; ++i)
        {
            std::vector<int>::iterator j = i+1;
            std::vector<int>::iterator k = num.end()-1;
            while(j<k)
            {
                const int sum = *i+*j+*k;
                const int gap = std::abs(target-sum);
                if (gap < min_gap)
                {
                    closest_sum = sum;
                    min_gap = gap;
                }
                // move according to the sum and target
                if (sum<target)
                { 
                    ++j;
                }
                else if (sum>target)
                {
                    --k;
                }
                else
                {
                    return target;
                }
            }
        }
        return closest_sum;
    }
};

 

Tips:

1. 方法就是:“先排序,再夹逼”这是一种时间复杂度为O(n²),空间复杂度为O(1)的常用技巧

2. 方法的实现技巧是设置头尾两个pointer,根据sum与target的关系大小选择指针move的方向

3. 为什么要先排序再夹逼?因为可以根据sum与target关系调整大小,使其每次计算都能有目标地移动。这样每次遍历保证能得到包含*i在内的最优sum。

==================================================

第二次过这道题,有了3Sum的基础之后,这道题的思路也就有了。

class Solution {
public:
    int threeSumClosest(vector<int>& nums, int target) {
            int ret = 0;
            if (nums.size()<3 )
            {
                for ( int i=0; i<nums.size(); ++i ) ret += nums[i];
                return ret;
            }
            ret = nums[0]+nums[1]+nums[nums.size()-1];
            std::sort(nums.begin(), nums.end());
            for ( int i=0; i<nums.size()-2; ++i )
            {
                if ( i>0 && nums[i]==nums[i-1] ) continue;
                int begin = i+1;
                int end = nums.size()-1;
                while ( begin<end )
                {
                    int value = nums[i]+nums[begin]+nums[end];
                    if ( value<target )
                    {
                        ret = abs(ret-target)>abs(value-target) ? value : ret;
                        begin++;
                        while ( begin<end && nums[begin-1]==nums[begin] ) begin++;
                    }
                    else if ( value>target )
                    {
                        ret = abs(ret-target)>abs(value-target) ? value : ret;
                        end--;
                        while ( begin<end && nums[end]==nums[end+1] ) end--;
                    }
                    else
                    {
                        return target;
                    }
                }
            }
            return ret;
    }
};

tips:

大体思路还是“排序+双指针夹逼”

具体的做法就是每次算一个可能的更贴近结果的和后,就检查一次要更新返回的值。

上述的代码有些麻烦了。

如果不直接维护返回值,而是维护一个与target的差值,这样就省去了很多麻烦。而这种简便一些的思路是第一次学习别人代码AC的思路。

posted on 2015-04-19 21:00  承续缘  阅读(216)  评论(0编辑  收藏  举报

导航