K好数(DP)
问题描写叙述
假设一个自然数N的K进制表示中随意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。
求L位K进制数中K好数的数目。
比如K = 4,L = 2的时候。全部K好数为11、13、20、22、30、31、33 共7个。因为这个数目非常大。请你输出它对1000000007取模后的值。
输入格式
输入包括两个正整数。K和L。
输出格式
输出一个整数,表示答案对1000000007取模后的值。
例子输入
4 2
例子输出
7
数据规模与约定
对于30%的数据,KL <= 106;
对于50%的数据,K <= 16, L <= 10;
对于100%的数据,1 <= K,L <= 100。
代码实现
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#define MAX 110
using namespace std;
const int a=1000000007;
long long use[MAX];
int luse[MAX];
long long sum;
int K,L;
void refreash();
int main()
{
memset( use,0,sizeof(use) );
fill( luse,luse + MAX,1);
sum = 0;
cin>>K>>L;
for( int t = 1; t < L; t++ )
{
for( int i = 0; i < K; i++ )
{
for( int j = 0; j < K; j++ )
{
if( j != i-1 && j != i+1 )
use[j] += luse[i];
}
}
refreash();
}
for( int i = 1; i < K; i++ )
sum += luse[i]%a;
cout<<sum%a<<endl;
return 0;
}
void refreash()
{
for( int i = 0; i < K; i++ )
{
luse[i]=use[i]%a;
use[i]=0;
}
return ;
}