pytorch实现squeezenet

squeezenet是16年发布的一款轻量级网络模型,模型很小,只有4.8M,可用于移动设备,嵌入式设备。

关于squeezenet的原理可自行阅读论文或查找博客,这里主要解读下pytorch对squeezenet的官方实现。

地址:https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py

首先定义fire模块,这是squeezenet的核心所在,降低3X3卷积的数量。

class Fire(nn.Module):

    def __init__(self, inplanes, squeeze_planes,
                 expand1x1_planes, expand3x3_planes):
        super(Fire, self).__init__()
        self.inplanes = inplanes
        self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)#定义压缩层,1X1卷积
        self.squeeze_activation = nn.ReLU(inplace=True)
        self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,#定义扩展层,1X1卷积
                                   kernel_size=1)
        self.expand1x1_activation = nn.ReLU(inplace=True)
        self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,#定义扩展层,3X3卷积
                                   kernel_size=3, padding=1)
        self.expand3x3_activation = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.squeeze_activation(self.squeeze(x))
        return torch.cat([
            self.expand1x1_activation(self.expand1x1(x)),
            self.expand3x3_activation(self.expand3x3(x))
        ], 1)

可以看到首先定义压缩层与两个扩展层,压缩层用的是1X1卷积,扩展层是1X1卷积和3X3卷积的混合使用,网络inference的脉络是先经过压缩层,然后并行经过两个扩展层,最后将扩展层串联。

定义完核心模块,来看网络整体。

class SqueezeNet(nn.Module):

    def __init__(self, version=1.0, num_classes=1000):
        super(SqueezeNet, self).__init__()
        if version not in [1.0, 1.1]:
            raise ValueError("Unsupported SqueezeNet version {version}:"
                             "1.0 or 1.1 expected".format(version=version))
        self.num_classes = num_classes
        if version == 1.0:
            self.features = nn.Sequential(
                nn.Conv2d(3, 96, kernel_size=7, stride=2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(96, 16, 64, 64),
                Fire(128, 16, 64, 64),
                Fire(128, 32, 128, 128),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(256, 32, 128, 128),
                Fire(256, 48, 192, 192),
                Fire(384, 48, 192, 192),
                Fire(384, 64, 256, 256),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(512, 64, 256, 256),
            )
        else:
            self.features = nn.Sequential(
                nn.Conv2d(3, 64, kernel_size=3, stride=2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(64, 16, 64, 64),
                Fire(128, 16, 64, 64),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(128, 32, 128, 128),
                Fire(256, 32, 128, 128),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(256, 48, 192, 192),
                Fire(384, 48, 192, 192),
                Fire(384, 64, 256, 256),
                Fire(512, 64, 256, 256),
            )
        # Final convolution is initialized differently form the rest
        final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            final_conv,
            nn.ReLU(inplace=True),
            nn.AvgPool2d(13, stride=1)
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                if m is final_conv:
                    init.normal_(m.weight, mean=0.0, std=0.01)
                else:
                    init.kaiming_uniform_(m.weight)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.features(x)
        x = self.classifier(x)
        return x.view(x.size(0), self.num_classes)

首先依然是定义网络层,在这里有两个版本,差别不大,都是fire模块的堆积,最后经过全局平均池化输出1000类。这里对卷积层采用了不同的初始化策略,我还没仔细研究过,就不说了。

posted @ 2018-09-26 22:40  wuzeyuan  阅读(2455)  评论(1编辑  收藏  举报