kafka消息可靠性保证(二)

kafka消息可靠性保证(二)

kafka 消息保证是老生常谈的事情, 总结都做了n遍, 现在结合源码(kakfa版本v2.6.2)再来一遍,可靠性是由3个部分来进行保证的

  1. 消费者保证
  2. 生产者保证
  3. broker保证

消费者保证

消费者对应的包为client项目下,其中重点包和生产者类似

  • **org.apache.kafka.clients.consumer 包 **

消费场景设置

  • autoCommit vs 手动commit

    1. enable.auto.commit = true

    org.apache.kafka.clients.consumer.ConsumerConfig#ENABLE_AUTO_COMMIT_DOC

      // 设置自动提交参数 的自定义, 如果没有设置就为false
      boolean maybeOverrideEnableAutoCommit() {
         		  // 获取group id 
              Optional<String> groupId = Optional.ofNullable(getString(CommonClientConfigs.GROUP_ID_CONFIG));
              // 获取系统中设置的自动提交参数
        			boolean enableAutoCommit = getBoolean(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG);
              
        			if (!groupId.isPresent()) { // overwrite in case of default group id where the config is not explicitly provided
                	// 默认false
                  if (!originals().containsKey(ENABLE_AUTO_COMMIT_CONFIG)) {
                      enableAutoCommit = false;
                  } else if (enableAutoCommit) {
                    // 没有设置groupId 不能自动提交
                      throw new InvalidConfigurationException(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG + " cannot be set to true when default group id (null) is used.");
                  }
              }
              return enableAutoCommit;
          }
    
    1. auto.commit.interval.ms

    org.apache.kafka.clients.consumer.ConsumerConfig#AUTO_COMMIT_INTERVAL_MS_DOC

        	//默认值为5000 
       .define(AUTO_COMMIT_INTERVAL_MS_CONFIG,
                                               Type.INT,
                                               5000,
                                               atLeast(0),
                                               Importance.LOW,
                                               AUTO_COMMIT_INTERVAL_MS_DOC)
         //
    
    1. 偏移量提交

    org.apache.kafka.clients.consumer.KafkaConsumer#poll(org.apache.kafka.common.utils.Timer, boolean)

    在consumerpoll 拉取数据的时候,会有coordinator.poll()

       private ConsumerRecords<K, V> poll(final Timer timer, final boolean includeMetadataInTimeout) {
               // 控制是当前线程消费的,非当前线程消费直接抛出异常
               acquireAndEnsureOpen();
               try {
                   // 消费者记录下消息消费的开始时间
                   this.kafkaConsumerMetrics.recordPollStart(timer.currentTimeMs());
       
                   if (this.subscriptions.hasNoSubscriptionOrUserAssignment()) {
                       throw new IllegalStateException("Consumer is not subscribed to any topics or assigned any partitions");
                   }
       
                   do {
                       // 消费者触发唤醒,看有没有唤醒,没有直接抛出异常
                       client.maybeTriggerWakeup();
       
                       if (includeMetadataInTimeout) {
                           // try to update assignment metadata BUT do not need to block on the timer for join group
                           updateAssignmentMetadataIfNeeded(timer, false);
                       } else {
                           // 同步消费者元数据,这里要通过coordinator 去同步出去
                          // 要是没有就 rebalance 加到这个group里面去
                           while (!updateAssignmentMetadataIfNeeded(time.timer(Long.MAX_VALUE), true)) {
                               log.warn("Still waiting for metadata");
                           }
                       }
       
                       final Map<TopicPartition, List<ConsumerRecord<K, V>>> records = pollForFetches(timer);
                       if (!records.isEmpty()) {
                           // before returning the fetched records, we can send off the next round of fetches
                           // and avoid block waiting for their responses to enable pipelining while the user
                           // is handling the fetched records.
                           //
                           // NOTE: since the consumed position has already been updated, we must not allow
                           // wakeups or any other errors to be triggered prior to returning the fetched records.
                           if (fetcher.sendFetches() > 0 || client.hasPendingRequests()) {
                               client.transmitSends();
                           }
       
                           return this.interceptors.onConsume(new ConsumerRecords<>(records));
                       }
                   } while (timer.notExpired());
       
                   return ConsumerRecords.empty();
               } finally {
                   release();
                   this.kafkaConsumerMetrics.recordPollEnd(timer.currentTimeMs());
               }
           }
       
       
       // coordinator.poll调用
       public boolean poll(Timer timer, boolean waitForJoinGroup) {
              ...
                // 先不管上面的逻辑
                // 在这里就回自动提交当前的消费的offset 
                //。具体就是掉send
               maybeAutoCommitOffsetsAsync(timer.currentTimeMs());
               return true;
           }
       
       // 异步提交偏移量
       private void doAutoCommitOffsetsAsync() {
               // 偏移量提交
               Map<TopicPartition, OffsetAndMetadata> allConsumedOffsets = subscriptions.allConsumed();
               log.debug("Sending asynchronous auto-commit of offsets {}", allConsumedOffsets);
       
               commitOffsetsAsync(allConsumedOffsets, (offsets, exception) -> {
                   if (exception != null) {
                       if (exception instanceof RetriableCommitFailedException) {
                           log.debug("Asynchronous auto-commit of offsets {} failed due to retriable error: {}", offsets,
                               exception);
                           nextAutoCommitTimer.updateAndReset(rebalanceConfig.retryBackoffMs);
                       } else {
                           log.warn("Asynchronous auto-commit of offsets {} failed: {}", offsets, exception.getMessage());
                       }
                   } else {
                       log.debug("Completed asynchronous auto-commit of offsets {}", offsets);
                   }
               });
           }
    
    1. rebalance

      Kafka提供了一个角色:coordinator来执行对于consumer group的管理。坦率说kafka对于coordinator的设计与修改是一个很长的故事。最新版本的coordinator也与最初的设计有了很大的不同。这里我只想提及两次比较大的改变。

      首先是0.8版本的coordinator,那时候的coordinator是依赖zookeeper来实现对于consumer group的管理的。Coordinator监听zookeeper的/consumers/<group>/ids的子节点变化以及/brokers/topics/<topic>数据变化来判断是否需要进行rebalance。group下的每个consumer都自己决定要消费哪些分区,并把自己的决定抢先在zookeeper中的/consumers/<group>/offsets/<topic>/<partition>下注册。很明显,这种方案要依赖于zookeeper的帮助,而且每个consumer是单独做决定的,没有那种“大家属于一个组,要协商做事情”的精神。

      // 老版本和测试代码可以看到对应的定义,可见是在zookeeper上注册offsets
      def getConsumersOffsetsZkPath(consumerGroup: String, topic: String, partition: Int): String = {
            s"/consumers/$consumerGroup/offsets/$topic/$partition"
      }
      

      基于这些潜在的弊端,0.9版本的kafka改进了coordinator的设计,提出了group coordinator——每个consumer group都会被分配一个这样的coordinator用于组管理和位移管理。这个group coordinator比原来承担了更多的责任,比如组成员管理、位移提交保护机制等。当新版本consumer group的第一个consumer启动的时候,它会去和kafka server确定谁是它们组的coordinator。之后该group内的所有成员都会和该coordinator进行协调通信。显而易见,这种coordinator设计不再需要zookeeper了,性能上可以得到很大的提升。后面的所有部分我们都将讨论最新版本的coordinator设计。

      • 初始化

        new ConsumerCoordinator(groupRebalanceConfig,
                                logContext,
                                this.client,
                                assignors,
                                this.metadata,
                                this.subscriptions,
                                metrics,
                                metricGrpPrefix,
                                this.time,
                                enableAutoCommit,
                                config.getInt(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG),
                                this.interceptors,
                                config.getBoolean(ConsumerConfig.THROW_ON_FETCH_STABLE_OFFSET_UNSUPPORTED));
        
        
        // 这里注重看下groupRebalanceConfig  这个属性
        public GroupRebalanceConfig(AbstractConfig config, ProtocolType protocolType) {
          		//。
                this.sessionTimeoutMs = config.getInt(CommonClientConfigs.SESSION_TIMEOUT_MS_CONFIG);
        
                // Consumer and Connect use different config names for defining rebalance timeout
          // 消费者和连接的使用的不同的rebalance timeout
                if (protocolType == ProtocolType.CONSUMER) {
                  // 使用的是max.poll.interval.ms 默认是5分钟
                    this.rebalanceTimeoutMs = config.getInt(CommonClientConfigs.MAX_POLL_INTERVAL_MS_CONFIG);
                } else {
                  //
                    this.rebalanceTimeoutMs = config.getInt(CommonClientConfigs.REBALANCE_TIMEOUT_MS_CONFIG);
                }
        
                ...
            }
        

      rebalance 触发条件一共有3种

      • 组成员发生变更(新consumer加入组、已有consumer主动离开组或已有consumer崩溃了)
      • 订阅主题数发生变更——这当然是可能的,如果你使用了正则表达式的方式进行订阅,那么新建匹配正则表达式的topic就会触发rebalance
      • 订阅主题的分区数发生变更

      下面以加入组为例子看下rebalance的触发

       @Override
          protected void onJoinPrepare(int generation, String memberId) {
              log.debug("Executing onJoinPrepare with generation {} and memberId {}", generation, memberId);
              // commit offsets prior to rebalance if auto-commit enabled
            // 该处的timeout 就是在上面设置好的 max.poll.interval.ms 
            // 如果还是在这个时间有效期内, 就一步自动提交一次offset
            // 校验 超时时间
              maybeAutoCommitOffsetsSync(time.timer(rebalanceConfig.rebalanceTimeoutMs));
      
              //出现错误或心跳超时时;在这种情况下,无论以前是什么
              //拥有的分区将丢失,我们应该触发回调并清理分配;
              //否则我们可以正常进行并根据协议撤销分区,
              //在这种情况下,我们应该仅在触发撤销回调后更改分配
              //因此用户仍然可以访问先前拥有的分区来提交偏移等。
      
              // the generation / member-id can possibly be reset by the heartbeat thread
              // upon getting errors or heartbeat timeouts; in this case whatever is previously
              // owned partitions would be lost, we should trigger the callback and cleanup the assignment;
              // otherwise we can proceed normally and revoke the partitions depending on the protocol,
              // and in that case we should only change the assignment AFTER the revoke callback is triggered
              // so that users can still access the previously owned partitions to commit offsets etc.
              Exception exception = null;
              final Set<TopicPartition> revokedPartitions;
              if (generation == Generation.NO_GENERATION.generationId &&
                  memberId.equals(Generation.NO_GENERATION.memberId)) {
                  revokedPartitions = new HashSet<>(subscriptions.assignedPartitions());
      
                  if (!revokedPartitions.isEmpty()) {
                      log.info("Giving away all assigned partitions as lost since generation has been reset," +
                          "indicating that consumer is no longer part of the group");
                      exception = invokePartitionsLost(revokedPartitions);
      
                      subscriptions.assignFromSubscribed(Collections.emptySet());
                  }
              } else {
                //在eager 的情况下直接重分配所有的分区
                  switch (protocol) {
                      case EAGER:
                          // revoke all partitions
                          revokedPartitions = new HashSet<>(subscriptions.assignedPartitions());
                          exception = invokePartitionsRevoked(revokedPartitions);
      
                          subscriptions.assignFromSubscribed(Collections.emptySet());
      
                          break;
      
                      case COOPERATIVE:
                      //在这种情况下,只处理不再订阅的分区
                          // only revoke those partitions that are not in the subscription any more.
                          Set<TopicPartition> ownedPartitions = new HashSet<>(subscriptions.assignedPartitions());
                          revokedPartitions = ownedPartitions.stream()
                              .filter(tp -> !subscriptions.subscription().contains(tp.topic()))
                              .collect(Collectors.toSet());
      
                          if (!revokedPartitions.isEmpty()) {
                              exception = invokePartitionsRevoked(revokedPartitions);
      
                              ownedPartitions.removeAll(revokedPartitions);
                              subscriptions.assignFromSubscribed(ownedPartitions);
                          }
      
                          break;
                  }
              }
      
              isLeader = false;
              subscriptions.resetGroupSubscription();
      
              if (exception != null) {
                  throw new KafkaException("User rebalance callback throws an error", exception);
              }
          }
      
      @Override
      protected void onJoinComplete(int generation,
                                        String memberId,
                                        String assignmentStrategy,
                                        ByteBuffer assignmentBuffer) {
              log.debug("Executing onJoinComplete with generation {} and memberId {}", generation, memberId);
      
              // Only the leader is responsible for monitoring for metadata changes (i.e. partition changes)
              // 只有leader 才可以修改元数据
              if (!isLeader)
                  assignmentSnapshot = null;
              // 查询Coordinator给消费者的分配策略 就是几个分区怎么分给几个消费者的
              //  如果没有,则提示策略异常
              ConsumerPartitionAssignor assignor = lookupAssignor(assignmentStrategy);
              if (assignor == null)
                  throw new IllegalStateException("Coordinator selected invalid assignment protocol: " + assignmentStrategy);
      
              // Give the assignor a chance to update internal state based on the received assignment
              // 获取消费者组内最新的元数据(包含几个消费者 offset到哪里了)
              groupMetadata = new ConsumerGroupMetadata(rebalanceConfig.groupId, generation, memberId, rebalanceConfig.groupInstanceId);
              // 这个消费者订阅的分区set
              Set<TopicPartition> ownedPartitions = new HashSet<>(subscriptions.assignedPartitions());
      
              // should at least encode the short version
              // 内容长度一看就不对
              if (assignmentBuffer.remaining() < 2)
                  throw new IllegalStateException("There are insufficient bytes available to read assignment from the sync-group response (" +
                      "actual byte size " + assignmentBuffer.remaining() + ") , this is not expected; " +
                      "it is possible that the leader's assign function is buggy and did not return any assignment for this member, " +
                      "or because static member is configured and the protocol is buggy hence did not get the assignment for this member");
              // 内容buffer转成对应实体
              Assignment assignment = ConsumerProtocol.deserializeAssignment(assignmentBuffer);
              //coordinator传过来的 订阅的分区set
              Set<TopicPartition> assignedPartitions = new HashSet<>(assignment.partitions());
              // 对比下 发现现在的订阅的分区 和 传过来的对不上, 就重新加入消费者组
              if (!subscriptions.checkAssignmentMatchedSubscription(assignedPartitions)) {
                  log.warn("We received an assignment {} that doesn't match our current subscription {}; it is likely " +
                      "that the subscription has changed since we joined the group. Will try re-join the group with current subscription",
                      assignment.partitions(), subscriptions.prettyString());
                  // 重新加入- 这里只是改值,后续有个
                  requestRejoin();
                  // 终止
                  return;
              }
      
      
              final AtomicReference<Exception> firstException = new AtomicReference<>(null);
              Set<TopicPartition> addedPartitions = new HashSet<>(assignedPartitions);
              addedPartitions.removeAll(ownedPartitions);
      
              // rebalance 协议
              //  EAGER  完全重新分配分区
              //  COOPERATIVE 消费者在下次rebalance之前保留其当前拥有的分区
              if (protocol == RebalanceProtocol.COOPERATIVE) {
                  Set<TopicPartition> revokedPartitions = new HashSet<>(ownedPartitions);
                  revokedPartitions.removeAll(assignedPartitions);
      
                  log.info("Updating assignment with\n" +
                          "\tAssigned partitions:                       {}\n" +
                          "\tCurrent owned partitions:                  {}\n" +
                          "\tAdded partitions (assigned - owned):       {}\n" +
                          "\tRevoked partitions (owned - assigned):     {}\n",
                      assignedPartitions,
                      ownedPartitions,
                      addedPartitions,
                      revokedPartitions
                  );
      
                  if (!revokedPartitions.isEmpty()) {
                      // Revoke partitions that were previously owned but no longer assigned;
                      // note that we should only change the assignment (or update the assignor's state)
                      // AFTER we've triggered  the revoke callback
                      firstException.compareAndSet(null, invokePartitionsRevoked(revokedPartitions));
      
                      // If revoked any partitions, need to re-join the group afterwards
                      log.debug("Need to revoke partitions {} and re-join the group", revokedPartitions);
                      // 重新加入消费组
                      requestRejoin();
                  }
              }
      
              // The leader may have assigned partitions which match our subscription pattern, but which
              // were not explicitly requested, so we update the joined subscription here.
              //在这边又同步下本地存的订阅信息
              maybeUpdateJoinedSubscription(assignedPartitions);
      
              // Catch any exception here to make sure we could complete the user callback.
              // 更新指定的信息
              firstException.compareAndSet(null, invokeOnAssignment(assignor, assignment));
      
              // Reschedule the auto commit starting from now
              // 自动提交 下次的自动提交时间
              if (autoCommitEnabled)
                  this.nextAutoCommitTimer.updateAndReset(autoCommitIntervalMs);
      
              subscriptions.assignFromSubscribed(assignedPartitions);
      
              // Add partitions that were not previously owned but are now assigned
              firstException.compareAndSet(null, invokePartitionsAssigned(addedPartitions));
      
              // 期间有报错没
              if (firstException.get() != null) {
                  if (firstException.get() instanceof KafkaException) {
                      throw (KafkaException) firstException.get();
                  } else {
                      throw new KafkaException("User rebalance callback throws an error", firstException.get());
                  }
              }
          }
      
      
posted @ 2021-11-28 20:24  _我在清水河边  阅读(264)  评论(0编辑  收藏  举报