I - 取石子游戏

有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

Input

输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。

Output

输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。

Sample Input

2 1
8 4
4 7

Sample Output

0
1
0

就是威佐夫博弈

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<cmath>
#include<string.h>
#include<algorithm>
#define sf scanf
#define pf printf
#define pb push_back
#define mm(a,b) memset((a),(b),sizeof(a))
#include<vector>
typedef long long ll;
typedef double db;
const ll mod=1e9+7;
using namespace std;
const double pi=acos(-1.0);
//template <class T> 
//void swap(T &a,T &b) {T c;c=a;a=b;b=a;}
bool wzl(ll a,ll b)
{
	db ans=(1+sqrt(5))/2;
	if(a==0) return true;
	ll d=b-a;
	ll cas=(ll)d*ans;
	if(a==cas) return false;
	return true;
}
int main()
{
	ll a,b;
	while(~sf("%lld%lld",&a,&b))
	{
		if(a>b) 
		{
			ll c=a;
		a=b;
		b=c;
		 } 
		if(wzl(a,b))
		pf("1\n");
		else
		pf("0\n");
	}
	return 0;
}
posted @ 2018-07-26 12:19  一无所知小白龙  阅读(190)  评论(0编辑  收藏  举报