474. Ones and Zeroes
In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.
For now, suppose you are a dominator of m 0s
and n 1s
respectively. On the other hand, there is an array with strings consisting of only 0s
and 1s
.
Now your task is to find the maximum number of strings that you can form with given m 0s
and n 1s
. Each 0
and 1
can be used at most once.
Note:
- The given numbers of
0s
and1s
will both not exceed100
- The size of given string array won't exceed
600
.
Example 1:
Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3 Output: 4 Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”
Example 2:
Input: Array = {"10", "0", "1"}, m = 1, n = 1 Output: 2 Explanation: You could form "10", but then you'd have nothing left. Better form "0" and "1".
题目含义:这道题的意思是给了m个0和n个1,还有一堆01构成的字符串,用这m个0和n个1最多能组成那堆字符串里的几个字符串。
这道题的基本思想也就是DP,其实就是顺序扫描字符串,每加入一个字符串,都用DP公式计算下
1 // 题目中给定m个0与n个1,dp[m][n]就标记了在当前的字符串序列下,能够用m个0与n个1取得的最多字符串。显然,dp[0][0] = 0 2 // ,因为没有0与1可用的时候,必然得不到字符串.dp[m][n] = max{dp[m][n],dp[m-m0][n-n0]+1},针对每一个字符串,实质上我们都采取两种策略, 3 // 选这个字符串,还是不选。做决定之前,先统计这个字符串(第i个)有多少个0与1,分别记为m0与n0,如果不选这个字符串, 4 // 那么dp[m][n]的值不会发生任何改变,但是选了之后,它的值就是用了m-m0个0 与n-n0个1,所得到的最多的字符串,也就是f[m-m0][n-n0]再加上1 5 int[][] dp = new int[m + 1][n + 1]; 6 for (String curr:strs) 7 { 8 int num0 = 0, num1 = 0; 9 for (int j = 0; j < curr.length(); j++) { 10 if (curr.charAt(j) == '0') num0++; 11 else num1++; 12 } 13 for (int i = m; i >= num0; i--) { 14 for (int j = n; j >= num1; j--) { 15 dp[i][j] = Math.max(dp[i][j], dp[i - num0][j - num1] + 1); 16 } 17 } 18 } 19 return dp[m][n];