377. Combination Sum IV

Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

nums = [1, 2, 3]
target = 4
The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations.
Therefore the output is 7.

 Follow up:

What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?

题目含义:给定多个正整数且没有重复,从中挑选任意个数字(可以重复)使其加起来等于给定目标值target

思路:

 dp[i]表示总和为i的情况数,假设当前整数值等于n(n<i),如果我们知道了 dp[i-n] 的情况数,因为 dp[i-n] 的每一种情况加n都等于dp[i],所以说dp[i-n]和dp[i]的情况数相同。
 每获取一个整数n,都会给了dp[i]添加dp[i-n]种情况,所以公式为dp[i] = dp[i] + dp[i-n]

例如:
 当前元素n等于1时,dp[9] = dp[9] + dp[9-1]
          dp[8] = dp[8] + dp[8-1]
           ...
          dp[1] = dp[1] + dp[1-1]
 当前元素n等于2时,dp[9] = dp[9] + dp[9-2]
             dp[8] = dp[8] + dp[8-2]
           ...
             dp[2] = dp[2] + dp[2-2]
 当前元素n等于3时,dp[9] = dp[9] + dp[9-3]
             dp[8] = dp[8] + dp[8-3]
           ...
             dp[3] = dp[3] + dp[3-3]

 1     public int combinationSum4(int[] nums, int target) {                  
 2         int[] dp=new int[target+1];
 3         dp[0]=1;
 4         for(int i=1;i<=target;i++)
 5         {
 6             for (int num:nums)
 7             {
 8                 if(i>=num) dp[i]=dp[i]+dp[i-num];
 9             }
10         }
11         return dp[target];
12     }

 

 类似题目: 494. Target Sum

请注意:本题目选取的数字可以多次重复,而题目494中的数字不可重复选择

posted @ 2017-10-19 20:02  daniel456  阅读(114)  评论(0编辑  收藏  举报