300. Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence.
For example,
Given [10, 9, 2, 5, 3, 7, 101, 18]
,
The longest increasing subsequence is [2, 3, 7, 101]
, therefore the length is 4
. Note that there may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
题目含义:给定一个没有排序的数组,返回最长递增子序列(注意不是子字符串)的长度
1 public int lengthOfLIS(int[] nums) { 2 if(nums.length == 0){ 3 return 0; 4 } 5 int[] a = new int[nums.length]; 6 int max = 0; 7 //依次遍历每一个元素,如果前面没有比他小的数字,则该数字构成的子串最大长度为1. 8 // 如果前面有多个比他小的数字,找出他们的最大值,然后加1作为本节点的最大长度 9 for (int i=0;i<nums.length;i++) 10 { 11 a[i] = 1; 12 for (int j=0;j<i;j++) 13 { 14 if(nums[j]<nums[i]) 15 { 16 a[i] = Math.max(a[i],a[j]+1); 17 } 18 } 19 max = Math.max(max,a[i]); 20 } 21 return max; 22 }