209. Minimum Size Subarray Sum
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
For example, given the array [2,3,1,2,4,3]
and s = 7
,
the subarray [4,3]
has the minimal length under the problem constraint.
More practice:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
题意:获取最短子串的长度,使其总和大于等于给定的值s
1 public int minSubArrayLen(int s, int[] nums) { 2 // 定义两个指针left和i,分别记录子数组的左右的边界位置,每次i右移1位,就将结果累加到sum中。 3 // 找出left到i范围内sum大于s时最小的长度(i-left+1),然后将left右移,同时在sum中去除nums[left]的值 4 int res = Integer.MAX_VALUE, left = 0, sum = 0; 5 for (int i = 0; i < nums.length; ++i) { 6 sum += nums[i]; 7 while (left <= i && sum >= s) { 8 res = Math.min(res, i - left + 1); 9 sum -= nums[left++]; 10 } 11 } 12 return res == Integer.MAX_VALUE ? 0 : res; 13 }