【CF1218E】Product Tuples
题目大意:给定一个长度为 \(N\) 的序列,求从序列中选出 \(K\) 个数的集合乘积之和是多少。
题解:
由于是选出 \(K\) 个数字组成的集合,可知对于要计算的 \(K\) 元组来说是没有标号的,而元组是由序列中 \(N\) 个数字组合而成的。因此,将要求的元组看作组合对象,该组合对象是由 \(N\) 个不同种类的组合对象组成的,且组合对象是没有标号的,因此采用普通生成函数计算即可。
对于第 \(i\) 个数的普通生成函数为 $$(1 + a_ix)$$,因此,原组合对象的生成函数是$$\prod\limits_{i = 1}^{n}(1+a_ix)$$。可以通过分治乘法来进行计算,时间复杂度为 \(O(nlogn)\)。
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int mod = 998244353, g = 3, ig = 332748118;
LL fpow(LL a, LL b, LL c) {
LL ret = 1 % c;
for (; b; b >>= 1, a = a * a % mod) if (b & 1) ret = ret * a % mod;
return ret;
}
void ntt(vector<LL> &v, vector<int> &rev, int opt) {
int tot = v.size();
for (int i = 0; i < tot; i++) if (i < rev[i]) swap(v[i], v[rev[i]]);
for (int mid = 1; mid < tot; mid <<= 1) {
LL wn = fpow(opt == 1 ? g : ig, (mod - 1) / (mid << 1), mod);
for (int j = 0; j < tot; j += mid << 1) {
LL w = 1;
for (int k = 0; k < mid; k++) {
LL x = v[j + k], y = v[j + mid + k] * w % mod;
v[j + k] = (x + y) % mod, v[j + mid + k] = (x - y + mod) % mod;
w = w * wn % mod;
}
}
}
if (opt == -1) {
LL itot = fpow(tot, mod - 2, mod);
for (int i = 0; i < tot; i++) v[i] = v[i] * itot % mod;
}
}
vector<LL> convolution(vector<LL> &a, int cnta, vector<LL> &b, int cntb, const function<LL(LL, LL)> &calc) {
int bit = 0, tot = 1;
while (tot <= 2 * max(cnta, cntb)) bit++, tot <<= 1;
vector<int> rev(tot);
for (int i = 0; i < tot; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << (bit - 1);
vector<LL> foo(tot), bar(tot);
for (int i = 0; i < cnta; i++) foo[i] = a[i];
for (int i = 0; i < cntb; i++) bar[i] = b[i];
ntt(foo, rev, 1), ntt(bar, rev, 1);
for (int i = 0; i < tot; i++) foo[i] = calc(foo[i], bar[i]);
ntt(foo, rev, -1);
return foo;
}
int main() {
//freopen("data.in", "r", stdin);
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int n, K;
cin >> n >> K;
vector<LL> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int m;
cin >> m;
while (m--) {
int opt;
cin >> opt;
vector<LL> b = a;
if (opt == 1) {
int q, x, y;
cin >> q >> x >> y;
x--;
b[x] = y;
for (int i = 0; i < n; i++) {
b[i] = (q - b[i] + mod) % mod;
}
} else {
int q, l, r, d;
cin >> q >> l >> r >> d;
l--, r--;
for (int i = l; i <= r; i++) {
b[i] = (b[i] + d) % mod;
}
for (int i = 0; i < n; i++) {
b[i] = (q - b[i] + mod) % mod;
}
}
function<vector<LL>(int, int)> solve = [&](int l, int r) {
if (l == r) {
return vector<LL> {1, b[l]};
}
int mid = l + r >> 1;
vector<LL> ls = solve(l, mid);
vector<LL> rs = solve(mid + 1, r);
return convolution(ls, mid - l + 2, rs, r - mid + 1, [&](LL a, LL b) {
return a * b % mod;
});
};
vector<LL> ans = solve(0, n - 1);
cout << ans[K] << endl;
}
return 0;
}