【洛谷P2257】YY的GCD

题目大意:求$$\sum\limits_{p\in prime}\sum\limits_{i=1}n\sum\limits_{j=1}m[gcd(i,j)=p]$$

题解:忽略最外层的求和式,其余部分可以直接利用狄利克雷卷积+除法分块进行计算。对于最外层的和式来说,直接枚举素数会超时。考虑设 \(t=pd\),这样就在两个独立的和式之间建立了关系,可以达到优化的作用。

代码如下

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn=1e7+10;

int n,m;
int mu[maxn],prime[maxn],tot,f[maxn],sum[maxn];
bool vis[maxn];

void seive(){
	mu[1]=1;
	for(int i=2;i<=1e7;i++){
		if(!vis[i])prime[++tot]=i,mu[i]=-1;
		for(int j=1;i*prime[j]<=1e7;j++){
			vis[i*prime[j]]=1;
			if(i%prime[j]==0)break;
			mu[i*prime[j]]=-mu[i];
		}
	}
	for(int i=1;i<=tot;i++)
		for(int j=1;j*prime[i]<=1e7;j++)
			f[prime[i]*j]+=mu[j];
	for(int i=1;i<=1e7;i++)sum[i]=sum[i-1]+f[i];
}

void solve(){
	ll ans=0;
	for(int i=1;i<=n;i++){
		int j=min(n/(n/i),m/(m/i));
		ans+=(ll)(sum[j]-sum[i-1])*(ll)(n/i)*(ll)(m/i);
		i=j;
	}
	printf("%lld\n",ans);
}

int main(){
	seive();
	int T;scanf("%d",&T);
	while(T--){
		scanf("%d%d",&n,&m);
		if(n>m)swap(n,m);
		solve();
	}
	return 0;
}
posted @ 2019-04-15 21:48  shellpicker  阅读(102)  评论(0编辑  收藏  举报