BZOJ2038: [2009国家集训队]小Z的袜子(hose)
Description
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
Input
输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。
Output
包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)
Sample Input
6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6
1 2 3 3 3 2
2 6
1 3
3 5
1 6
Sample Output
2/5
0/1
1/1
4/15
【样例解释】
询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
【数据规模和约定】
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。
0/1
1/1
4/15
【样例解释】
询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
【数据规模和约定】
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。
经典的莫队算法。。。
#include<cstdio> #include<cctype> #include<queue> #include<cmath> #include<cstring> #include<algorithm> #define rep(i,s,t) for(int i=s;i<=t;i++) #define dwn(i,s,t) for(int i=s;i>=t;i--) #define ren for(int i=first[x];i;i=next[i]) using namespace std; const int BufferSize=1<<16; char buffer[BufferSize],*head,*tail; inline char Getchar() { if(head==tail) { int l=fread(buffer,1,BufferSize,stdin); tail=(head=buffer)+l; } return *head++; } inline int read() { int x=0,f=1;char c=Getchar(); for(;!isdigit(c);c=Getchar()) if(c=='-') f=-1; for(;isdigit(c);c=Getchar()) x=x*10+c-'0'; return x*f; } const int maxn=50010; int n,m,bl[maxn],A[maxn],ans[maxn],ans2[maxn]; struct Query { int l,r,id; bool operator < (const Query& ths) const { if(bl[l]!=bl[ths.l]) return l<ths.l; return r<ths.r; } }Q[maxn]; int nowans,cnt[maxn]; void del(int x) { cnt[x]--; nowans-=cnt[x]; } void add(int x) { nowans+=cnt[x]; cnt[x]++; } int gcd(int a,int b) {return !b?a:gcd(b,a%b);} int main() { n=read();m=read();int SIZE=sqrt(n*0.9); rep(i,1,n) A[i]=read(),bl[i]=(i-1)/SIZE+1; rep(i,1,m) Q[Q[i].id=i].l=read(),Q[i].r=read(),ans2[i]=(long long)(Q[i].r-Q[i].l+1)*(Q[i].r-Q[i].l)/2; sort(Q+1,Q+m+1); int l=1,r=0; rep(i,1,m) { while(l<Q[i].l) del(A[l++]); while(r>Q[i].r) del(A[r--]); while(l>Q[i].l) add(A[--l]); while(r<Q[i].r) add(A[++r]); ans[Q[i].id]=nowans; } rep(i,1,m) { if(!ans[i]) puts("0/1"); else { int c=gcd(ans[i],ans2[i]); printf("%d/%d\n",ans[i]/c,ans2[i]/c); } } return 0; }