[CSP-S模拟测试]:小奇的仓库(warehouse)(树形DP)
题目背景
小奇采的矿实在太多了,它准备在喵星系建个矿石仓库。令它无语的是,喵星系的货运飞船引擎还停留在上元时代!
题目描述
喵星系有$n$个星球,星球以及星球间的航线形成一棵树。
从星球$a$到星球$b$要花费$[dis(a,b)\ Xor\ M]$秒。($dis(a,b)$表示$ab$间的航线长度,$Xor$为位运算中的异或)
为了给仓库选址,小奇想知道,星球$i(1\leqslant i\leqslant n)$到其它所有星球花费的时间之和。
输入格式
第一行包含两个正整数$n$,$M$。
接下来$n-1$行,每行$3$个正整数$a,b,c$,表示$a$,$b$之间的航线长度为$c$。
输出格式
$n$行,每行一个整数,表示星球$i$到其它所有星球花费的时间之和。
样例
样例输入:
4 0
1 2 1
1 3 2
1 4 3
样例输出:
6
8
10
12
数据范围与提示
保证答案不超过$2\times {10}^9$。
题解
$M=0$的时候的树上$DP$谁都会(假设),那么回归这道题,该怎么办呢?
先来观察数据范围,发现$M$很小,所以依然考虑从$M$入手。
那么我们先来考虑$M=1$的情况,我们只需要在$Xor$的时候记录有多少个$0$,多少个$1$,然后每当一条路径到2,那部分就再记录一个值。
现在来考虑满分算法,我们考虑$0\sim 16$,利用$bitset$不就好啦嘛~
时间复杂度:$\Theta(N\times M)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
struct rec
{
int nxt;
int to;
int w;
}e[200000];
int head[100001],cnt;
int n,m;
int ans[100001];
int size[100001];
int bit1[100001][20],bit2[100001][20];
long long dp[100001],g[100001];
bool vis[100001];
void add(int x,int y,int w)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
e[cnt].w=w;
head[x]=cnt;
}
void dfs(int x)
{
vis[x]=1;
bit1[x][0]=size[x]=1;
for(int i=head[x];i;i=e[i].nxt)
if(!vis[e[i].to])
{
dfs(e[i].to);
dp[x]+=size[e[i].to]*e[i].w+dp[e[i].to];
size[x]+=size[e[i].to];
for(int j=0;j<=15;j++)
bit1[x][(j+e[i].w)&15]+=bit1[e[i].to][j];
}
}
void DP(int x,int fa,long long w)
{
dp[x]=dp[fa];
dp[x]+=(size[1]-size[x]*2)*w;
g[x]=dp[x];
for(int i=0;i<=15;i++)
bit2[x][(i+w)&15]=bit2[fa][i]+bit1[fa][i]-bit1[x][(i-w+16)&15];
for(int i=0;i<=15;i++)
g[x]+=(bit2[x][i]+bit1[x][i])*((i^m)-i);
for(int i=head[x];i;i=e[i].nxt)
if(e[i].to!=fa)
DP(e[i].to,x,e[i].w);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<n;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
add(b,a,c);
}
dfs(1);
g[1]=dp[1];
for(int i=0;i<=15;i++)
g[1]+=bit1[1][i]*((i^m)-i);
for(int i=head[1];i;i=e[i].nxt)
DP(e[i].to,1,e[i].w);
for(int i=1;i<=n;i++)
printf("%lld\n",g[i]-m);
return 0;
}
rp++