$\LaTeX$数学公式大全6

$6\ Binary\ Operation/Relation\ Symbols$
$\ast$  \ast
$\star$  \star
$\cdot$  \cdot
$\circ$  \circ
$\bullet$  \bullet
$\bigcirc$  \bigcirc
$\diamond$  \diamond
$\times$  \times
$\div$  \div
$\centerdot$  \centerdot
$\circledast$  \circledast
$\circledcirc$  \circledcirc
$\circleddash$  \circleddash
$\dotplus$  \dotplus
$\divideontimes$  \divideontimes
$\pm$  \pm
$\mp$  \mp
$\amalg$  \amalg
$\odot$  \odot
$\ominus$  \ominus
$\oplus$  \oplus
$\oslash$  \oslash
$\otimes$  \otimes
$\wr$  \wr
$\Box$  \Box
$\boxplus$  \boxplus
$\boxminus$  \boxminus
$\boxtimes$  \boxtimes
$\boxdot$  \boxdot
$\square$  \square
$\cap$  \cap
$\cup$  \cup
$\uplus$  \uplus
$\sqcap$  \sqcap
$\sqcup$  \sqcup
$\wedge$  \wedge
$\vee$  \vee
$\dagger$  \dagger
$\ddagger$  \ddagger
$\barwedge$  \barwedge
$\curlywedge$  \curlywedge
$\Cap$  \Cap
$\bot$  \bot
$\intercal$  \intercal
$\doublebarwedge$  \doublebarwedge
$\lhd$  \lhd
$\rhd$  \rhd
$\triangleleft$  \triangleleft
$\triangleright$  \triangleright
$\unlhd$  \unlhd
$\unrhd$  \unrhd
$\bigtriangledown$  \bigtriangledown
$\bigtriangleup$  \bigtriangleup
$\setminus$  \setminus
$\veebar$  \veebar
$\curlyvee$  \curlyvee
$\Cup$  \Cup
$\top$  \top
$\rightthreetimes$  \rightthreetimes
$\leftthreetimes$  \leftthreetimes
$\equiv$  \equiv
$\cong$  \cong
$\neq$  \neq
$\sim$  \simleft
$\simeq$  \simeq
$\approx$  \approx
$\asymp$  \asymp
$\doteq$  \doteq
$\propto$  \propto
$\models$  \models
$\leq$  \leq
$\prec$  \prec
$\preceq$  \preceq
$\ll$  \ll
$\subset$  \subset
$\subseteq$  \subseteq
$\sqsubset$  \sqsubset
$\sqsubseteq$  \sqsubseteq
$\dashv$  \dashv
$\in$  \in
$\geq$  \geq
$\succ$  \succ
$\succeq$  \succeq
$\gg$  \gg
$\supset$  \supset
$\supseteq$  \supseteq
$\sqsupset$  \sqsupset
$\sqsupseteq$  \sqsupseteq
$\vdash$  \vdash
$\ni$  \ni
$\perp$  \perp
$\mid$  \mid
$\parallel$  \parallel
$\bowtie$  \bowtie
$\Join$  \Join
$\ltimes$  \ltimes
$\rtimes$  \rtimes
$\smile$  \smile
$\frown$  \frown
$\notin$  \notin
$\approxeq$  \approxeq
$\thicksim$  \thicksim
$\backsim$  \backsim
$\backsimeq$  \backsimeq
$\triangleq$  \triangleq
$\circeq$  \circeq
$\bumpeq$  \bumpeq
$\Bumpeq$  \Bumpeq
$\doteqdot$  \doteqdot
$\thickapprox$  \thickapprox
$\fallingdotseq$  \fallingdotseq
$\varpropto$  \varpropto
$\therefore$  \therefore
$\because$  \because
$\eqcirc$  \eqcirc
$\neq$  \neq
$\leqq$  \leqq
$\leqslant$  \leqslant
$\lessapprox$  \lessapprox
$\lll$  \lll
$\lessdot$  \lessdot
$\lesssim$  \lesssim
$\eqslantless$  \eqslantless
$\precsim$  \precsim
$\precapprox$  \precapprox
$\Subset$  \Subset
$\subseteqq$  \subseteqq
$\sqsubset$  \sqsubset
$\preccurlyeq$  \preccurlyeq
$\curlyeqprec$  \curlyeqprec
$\blacktriangleleft$  \blacktriangleleft
$\trianglelefteq$  \trianglelefteq
$\vartriangleleft$  \vartriangleleft
$\geqq$  \geqq
$\geqslant$  \geqslant
$\gtrapprox$  \gtrapprox
$\ggg$  \ggg
$\gtrdot$  \gtrdot
$\gtrsim$  \gtrsim
$\eqslantgtr$  \eqslantgtr
$\succsim$  \succsim
$\succapprox$  \succapprox
$\Supset$  \Supset
$\supseteqq$  \supseteqq
$\sqsupset$  \sqsupset
$\succcurlyeq$  \succcurlyeq
$\curlyeqsucc$  \curlyeqsucc
$\blacktriangleright$  \blacktriangleright
$\trianglerighteq$  \trianglerighteq
$\vartriangleright$  \vartriangleright
$\lessgtr$  \lessgtr
$\lesseqgtr$  \lesseqgtr
$\lesseqqgtr$  \lesseqqgtr
$\gtreqqless$  \gtreqqless
$\gtreqless$  \gtreqless
$\gtrless$  \gtrless
$\backepsilon$  \backepsilon
$\between$  \between
$\pitchfork$  \pitchfork
$\shortmid$  \shortmid
$\smallfrown$  \smallfrown
$\smallsmile$  \smallsmile
$\Vdash$  \Vdash
$\vDash$  \vDash
$\Vvdash$  \Vvdash
$\shortparallel$  \shortparallel
$\ncong$  \ncong
$\nmid$  \nmid
$\nparallel$  \nparallel
$\nparallel$  \nparallel
$\nshortparallel$  \shortparallel
$\nsim$  \nsim
$\nVDash$  \nVDash
$\nvDash$  \nvDash
$\nvdash$  \nvdash
$\ntriangleleft$  \ntriangleleft
$\ntrianglelefteq$  \ntrianglelefteq
$\ntriangleright$  \ntriangleright
$\ntrianglerighteq$  \ntrianglerighteq
$\nleq$  \nleq
$\nleqq$  \nleqq
$\nleqslant$  \nleqslant
$\nless$  \nless
$\nprec$  \nprec
$\npreceq$  \npreceq
$\precnapprox$  \precnapprox
$\precnsim$  \precnsim
$\lneq$  \lneq
$\lneqq$  \lneqq
$\lnsim$  \lnsim
$\lvertneqq$  \lvertneqq
$\ngeq$  \ngeq
$\ngeqq$  \ngeqq
$\ngeqslant$  \ngeqslant
$\ngtr$  \ngtr
$\nsucc$  \nsucc
$\nsucceq$  \nsucceq
$\succnapprox$  \succnapprox
$\succnsim$  \succnsim
$\gnapprox$  \gnapprox
$\gneq$  \gneq
$\gneqq$  \gneqq
$\gnsim$  \gnsim
$\gvertneqq$  \gvertneqq
$\nsubseteq$  \nsubseteq
$\nsupseteq$  \nsupseteq
$\nsubseteqq$  \nsubseteqq
$\nsupseteqq$  \nsupseteqq
$\subsetneq$  \subsetneq
$\supsetneq$  \supsetneq
$\subsetneqq$  \subsetneqq
$\supsetneqq$  \supsetneqq
$\varsubsetneq$  \varsubsetneq
$\varsupsetneq$  \varsupsetneq
$\varsubsetneqq$  \varsubsetneqq
$\varsupsetneqq$  \varsupsetneqq

posted @ 2019-08-08 21:29  HEOI-动动  阅读(2064)  评论(0编辑  收藏  举报