$\LaTeX$数学公式大全6
$6\ Binary\ Operation/Relation\ Symbols$
$\ast$ \ast
$\star$ \star
$\cdot$ \cdot
$\circ$ \circ
$\bullet$ \bullet
$\bigcirc$ \bigcirc
$\diamond$ \diamond
$\times$ \times
$\div$ \div
$\centerdot$ \centerdot
$\circledast$ \circledast
$\circledcirc$ \circledcirc
$\circleddash$ \circleddash
$\dotplus$ \dotplus
$\divideontimes$ \divideontimes
$\pm$ \pm
$\mp$ \mp
$\amalg$ \amalg
$\odot$ \odot
$\ominus$ \ominus
$\oplus$ \oplus
$\oslash$ \oslash
$\otimes$ \otimes
$\wr$ \wr
$\Box$ \Box
$\boxplus$ \boxplus
$\boxminus$ \boxminus
$\boxtimes$ \boxtimes
$\boxdot$ \boxdot
$\square$ \square
$\cap$ \cap
$\cup$ \cup
$\uplus$ \uplus
$\sqcap$ \sqcap
$\sqcup$ \sqcup
$\wedge$ \wedge
$\vee$ \vee
$\dagger$ \dagger
$\ddagger$ \ddagger
$\barwedge$ \barwedge
$\curlywedge$ \curlywedge
$\Cap$ \Cap
$\bot$ \bot
$\intercal$ \intercal
$\doublebarwedge$ \doublebarwedge
$\lhd$ \lhd
$\rhd$ \rhd
$\triangleleft$ \triangleleft
$\triangleright$ \triangleright
$\unlhd$ \unlhd
$\unrhd$ \unrhd
$\bigtriangledown$ \bigtriangledown
$\bigtriangleup$ \bigtriangleup
$\setminus$ \setminus
$\veebar$ \veebar
$\curlyvee$ \curlyvee
$\Cup$ \Cup
$\top$ \top
$\rightthreetimes$ \rightthreetimes
$\leftthreetimes$ \leftthreetimes
$\equiv$ \equiv
$\cong$ \cong
$\neq$ \neq
$\sim$ \simleft
$\simeq$ \simeq
$\approx$ \approx
$\asymp$ \asymp
$\doteq$ \doteq
$\propto$ \propto
$\models$ \models
$\leq$ \leq
$\prec$ \prec
$\preceq$ \preceq
$\ll$ \ll
$\subset$ \subset
$\subseteq$ \subseteq
$\sqsubset$ \sqsubset
$\sqsubseteq$ \sqsubseteq
$\dashv$ \dashv
$\in$ \in
$\geq$ \geq
$\succ$ \succ
$\succeq$ \succeq
$\gg$ \gg
$\supset$ \supset
$\supseteq$ \supseteq
$\sqsupset$ \sqsupset
$\sqsupseteq$ \sqsupseteq
$\vdash$ \vdash
$\ni$ \ni
$\perp$ \perp
$\mid$ \mid
$\parallel$ \parallel
$\bowtie$ \bowtie
$\Join$ \Join
$\ltimes$ \ltimes
$\rtimes$ \rtimes
$\smile$ \smile
$\frown$ \frown
$\notin$ \notin
$\approxeq$ \approxeq
$\thicksim$ \thicksim
$\backsim$ \backsim
$\backsimeq$ \backsimeq
$\triangleq$ \triangleq
$\circeq$ \circeq
$\bumpeq$ \bumpeq
$\Bumpeq$ \Bumpeq
$\doteqdot$ \doteqdot
$\thickapprox$ \thickapprox
$\fallingdotseq$ \fallingdotseq
$\varpropto$ \varpropto
$\therefore$ \therefore
$\because$ \because
$\eqcirc$ \eqcirc
$\neq$ \neq
$\leqq$ \leqq
$\leqslant$ \leqslant
$\lessapprox$ \lessapprox
$\lll$ \lll
$\lessdot$ \lessdot
$\lesssim$ \lesssim
$\eqslantless$ \eqslantless
$\precsim$ \precsim
$\precapprox$ \precapprox
$\Subset$ \Subset
$\subseteqq$ \subseteqq
$\sqsubset$ \sqsubset
$\preccurlyeq$ \preccurlyeq
$\curlyeqprec$ \curlyeqprec
$\blacktriangleleft$ \blacktriangleleft
$\trianglelefteq$ \trianglelefteq
$\vartriangleleft$ \vartriangleleft
$\geqq$ \geqq
$\geqslant$ \geqslant
$\gtrapprox$ \gtrapprox
$\ggg$ \ggg
$\gtrdot$ \gtrdot
$\gtrsim$ \gtrsim
$\eqslantgtr$ \eqslantgtr
$\succsim$ \succsim
$\succapprox$ \succapprox
$\Supset$ \Supset
$\supseteqq$ \supseteqq
$\sqsupset$ \sqsupset
$\succcurlyeq$ \succcurlyeq
$\curlyeqsucc$ \curlyeqsucc
$\blacktriangleright$ \blacktriangleright
$\trianglerighteq$ \trianglerighteq
$\vartriangleright$ \vartriangleright
$\lessgtr$ \lessgtr
$\lesseqgtr$ \lesseqgtr
$\lesseqqgtr$ \lesseqqgtr
$\gtreqqless$ \gtreqqless
$\gtreqless$ \gtreqless
$\gtrless$ \gtrless
$\backepsilon$ \backepsilon
$\between$ \between
$\pitchfork$ \pitchfork
$\shortmid$ \shortmid
$\smallfrown$ \smallfrown
$\smallsmile$ \smallsmile
$\Vdash$ \Vdash
$\vDash$ \vDash
$\Vvdash$ \Vvdash
$\shortparallel$ \shortparallel
$\ncong$ \ncong
$\nmid$ \nmid
$\nparallel$ \nparallel
$\nparallel$ \nparallel
$\nshortparallel$ \shortparallel
$\nsim$ \nsim
$\nVDash$ \nVDash
$\nvDash$ \nvDash
$\nvdash$ \nvdash
$\ntriangleleft$ \ntriangleleft
$\ntrianglelefteq$ \ntrianglelefteq
$\ntriangleright$ \ntriangleright
$\ntrianglerighteq$ \ntrianglerighteq
$\nleq$ \nleq
$\nleqq$ \nleqq
$\nleqslant$ \nleqslant
$\nless$ \nless
$\nprec$ \nprec
$\npreceq$ \npreceq
$\precnapprox$ \precnapprox
$\precnsim$ \precnsim
$\lneq$ \lneq
$\lneqq$ \lneqq
$\lnsim$ \lnsim
$\lvertneqq$ \lvertneqq
$\ngeq$ \ngeq
$\ngeqq$ \ngeqq
$\ngeqslant$ \ngeqslant
$\ngtr$ \ngtr
$\nsucc$ \nsucc
$\nsucceq$ \nsucceq
$\succnapprox$ \succnapprox
$\succnsim$ \succnsim
$\gnapprox$ \gnapprox
$\gneq$ \gneq
$\gneqq$ \gneqq
$\gnsim$ \gnsim
$\gvertneqq$ \gvertneqq
$\nsubseteq$ \nsubseteq
$\nsupseteq$ \nsupseteq
$\nsubseteqq$ \nsubseteqq
$\nsupseteqq$ \nsupseteqq
$\subsetneq$ \subsetneq
$\supsetneq$ \supsetneq
$\subsetneqq$ \subsetneqq
$\supsetneqq$ \supsetneqq
$\varsubsetneq$ \varsubsetneq
$\varsupsetneq$ \varsupsetneq
$\varsubsetneqq$ \varsubsetneqq
$\varsupsetneqq$ \varsupsetneqq