概率期望从入门到入土
概率期望
基础定义
首先,对于独立事件\(A,B\),我们有\(E(AB) = E(A)E(B)\)
这个式子在非独立事件的前提下是不成立的
另外\(A,B\)理解为随机变量,\(AB\)就是他们的乘积,一样理解为一个随机变量
根据等比数列求和公式
我们有
当\(x\in(0,1)\)时,我们有
一个特别特别特别重要的式子
对于任意事件\(A,B\)
我们都有
也就是期望的线性相加性
我们尝试证明一下
有了期望的线性相加性,我们就可以解决很多问题
接下来介绍几种套路以及思想
前缀和思想
对于离散变量\(X\)(离散变量只能取整数)我们有:
非常简单易懂的式子
还有
小练习
给定一个离散数组\(X[1....n]\),每个数在\([1,S]\)间随机,求数组最大值的期望值
我们设\(Y = \max_{i = 1}^nX_i\)
因为所有的\(X_i\)都是独立的
所以
所以
小练习2
请尝试证明
概率为\(p\)的事件期望\(\frac{1}{p}\)次后发生
对于任意的\(exp\)\((exp >0)\)
都有 \(exp = \sum_{i = 0}^\infty[i <=exp]\)
拿球问题
1
给定\(n\)个编号\(1-n\)的球,随机取\(1\)个,放回,求\(m\)次的编号的期望和
很显然一次的期望和是
而发现放回之后每一次操作都是独立的\
则有
2
给定\(n\)个编号\(1-n\)的球,随机取\(1\)个,不放回,球\(m\)次的编号的期望和
我们设这\(m\)次的和是\(S\)
则有
其中
则有
我们只需要求出单个\(E(x_i)\)的贡献
所以
我们惊奇的发现:放回不放回竟然对期望没有影响!
3
给定\(n\)个编号\(1-n\)的球,随机取\(1\)个,有\(p_1\)的几率放回\(1\)个,有\(p2\)概率放回\(2\)个,求\(m\)次的编号的期望和
由上面的结论我们上来猜测
答案为 \(\frac{m(n - 1)}{2}\)
恭喜你猜对了
我们再来尝试证明一下(其实和\(p1\),\(p 2\))没有任何关系
我们设\(S\)为最后的和,第\(i\)的球出现了\(y_i\)次,他的贡献是\(x_i\),\(x_i = y_i \times i\)
发现,由\((28)\)到\((29)\)这一步有点玄学
我们发现每一步其实是独立得,每一个数被选的概率都是\(\frac{m}{n}\),因为每个数都有可能被抽出后再被放回,综合考虑所有情况下所有的小球都是均等的
游走问题
1链上游走
在⼀条 \(n\)个点的链上游⾛,求从⼀端⾛到另⼀端的概率
我们设\(x_i\)表示从\(i\)开始,第一次到\(i + 1\)的期望步数
由于\(i\in[2,n]\)
则有
边界有
$x_1 = 1 $
我们就有递推式.
2完全图上游走
在⼀张 \(n\) 个点的完全图上游⾛,求从⼀个点⾛到另⼀个点的概率
在⼀张 \(n\) 个点的完全图上游⾛,求从⼀个点⾛到另⼀个点的概率
我们发现,除了目标点之外,所有点的概率都是一样的
一个点的概率是\(\frac{1}{n - 1}\)
期望步数就是
\((n - 1)\)(小练习2)
3完全二分图上游走
我们发现只有两种情况
同侧点到同侧点和同侧点到异侧点
我们设\(S_A\)为同侧点到同侧点的期望步数
设\(S_B\)为同侧点到异侧点的期望步数
则有
解方程就好了
4菊花图上游走
菊花图就是完全二分图
5树上游走
求根到\(x\)的期望步数
我们设\(f_{u}\)为\(u ->v\)第一次的期望步数
则有
我们想
对于根我们把根看作\(u\),要走的子树看作\(v\)就好了
再来一遍DP就没了
经典问题
1
每次随机⼀个 \([1,n]\) 的整数,问期望⼏次能凑⻬所有数
我们设
\(x_i\)表示已经凑齐了前\(i - 1\)个数,再凑齐一个的期望步数
单次的概率是
那么期望就是
2
随机⼀个⻓度为$ n$ 个排列 \(p\),求$ p[1…i]$ 中 \(p[i]\) 是最⼤的数的概率
很明显答案是
\(\frac{1}{i}\)
求满足上面条件的\(i\)的个数的平方的期望之和
首先我们应该明白一个东西
这应该是比较明显的,所以我们求出\(i\)的个数期望和在平方是显然不可以的.要去想别的思路.
我们再来看一看我们要求的式子
其中如果\(i\)被选了,\(X _i\)就是\(1\),否则为\(0\).
而由于\(X_i\)非\(1\)既\(0\)所以平方无意义
上式可以化为
前面那个式子我们其实就是调和级数,其实就是第一问的\(\frac{1 }{i}\)
我们重点看后面的式子
所人话就是给你排列中的\(i,j\)\((i<j)\)求\(i\)是\(1...i\)中的最大值同时满足\(j\)是\(1....j\)中的最大值的概率
这两个事件感性理解一下是独立的
所以上式可以化为
3
随机⼀个⻓度为 \(n\) 的排列 \(p\),求$ i$ 在 \(j\) 的后面的概率
很明显\(\frac{1}{2}\)
因为\(i,j\)独立所以每个数在后面的概率是均等的‘
4
随机⼀个长度为\(n\)的排列 \(p\),求它包含 $w[1…m] $作为⼦序列/连续子序列的概率
首先考虑第一问
这里给出两种做法
首先,从组合计数的方面考虑
或者说考虑
在所有的排列中,\(w\)数组的可能性只有\(m!\)个,而每一种可能都是独立均等的
所以答案是\(\frac{1}{m!}\)
5
有 \(n\) 堆⽯头,第\(i\)堆个数为$ a[i]\(,每次随机选⼀个⽯头然后把那⼀整堆都扔了,求第\) 1 $堆⽯头期望第⼏次被扔
我们规定一个\(X\)数组\(X_i\)表示\(i\)是第\(X_i\)次被拿走的
则有
老样子,直接上期望的线性相加性
6
随机⼀个⻓度为$ n $的\(01\)串,每个位置是$ 1 \(的概率是\) p \(,定义\) X \(是每段连续的\) 1 \(的⻓度的平⽅之和,求\)E[X]$
对于任意一个期望问题,我们先考虑,如果没有概率期望,该怎么做,推出式子后无脑套期望的线性相加就好了
我们设\(g_x\)为\(x\)结尾时后缀\(1\)的个数
\(f_x\)表示以\(x\)结尾时 的答案
则有
我们发现我们这个式子可以直接套
但是平方就比较恶心
我们发现
我们就把平方搞定了,就可以愉快的求\(f_ x\)了
7
给⼀个序列,每次随机删除⼀个元素,问$ i $和 \(j\) 在过程中相邻的概率
\(i\)与\(j\)相邻说明了什么,他们中间的数在他们之间就被删除掉了
我们考虑使用组合计数理性证明
我们发现我们只在意\([i,j]\)中\(i,j\)是否是最后被删除的
8
给定⼀棵树,将他的边随机⼀个顺序后依次插⼊,求 \(u,v\) 期望什么时候连通
式子整理一下,发现就是\(u,v\)之间的边数有关
我们设\(k\)为\(u,v\)之间的边的数量,运用组合计数枚举恰好在第\(i\)时刻连通
9
给$ 1…n \(这\) n $个数,每次随机选择⼀个还在的数并且删掉他的所有约数,求期望⼏次删完
经典问题,代表着经典的套路
这道题直接做貌似没有思路,因为每个数有''附属关系'',就比较恶心
这种具有删除关系的题目其实都是有一个套路的
我们假设一个数被删除后,剩下的数会被判“死缓”等到
如果我们选中了一个被判死缓的数,就把他直接删掉
如果是一个没有被判断死缓的数,就把他的约数判死缓,然后把他删掉
这样的话唯一的区别是什么?
我们选到每一个数的概率是不一样的
但是选到还没有被判断死缓的数的概率是一样的
所以两种方法本质是相同的
我们再设$X_i \(如果\)i\(删除时没有被判死缓,\)X_i$就是\(1\)否则\(0\)
就是\(i\)的倍数一共\(\frac{i}{n}\)个,\(i\)是最早被删除的概率就是\(\frac{1}{\lfloor \frac{i}{n} \rfloor}\)
期望线性性练习题
1
给定$ n \(个硬币,第\) i \(个硬币的价值为\) w[i]$,每次随机取⾛⼀个硬币,获得的
收益是左右两个硬币的价值的乘积,求期望总价值
我们设\(x_{i,j}\),如果\(i,j\)相遇了就是\(1\),否则就是\(0\)
那么答案就是
我们直接上期望线性性
2
• 有$ N \(个数\) a[1…N]$,每次等概率选出两个数,然后合并成⼀个新的数放回
来,得到的收益是新的数的值,求总收益的期望
我们设\(X_i\)表示\(a_i\)被选的次数
答案就是
老套路
进下来问题变成了如何求\(E(X_ i)\)
我们想一个数在第\(j\)次合并一个数的概率是什么?
第\(j\)次还有\((n - j + 1)\)个数,每个数都是独立的