influxDB2.2
下载安装
- 下载地址
- 下载后在解压目录中,输入cmd执行exe文件
- 浏览器访问localhost:8086
- 选择快速开始,填写用户信息,组织信息
相关概念
InfluxDB是一个由InfluxData开发的开源时序型数据。它由Go写成,着力于高性能地查询与存储时序型数据。InfluxDB被广泛应用于存储系统的监控数据,IoT行业的实时数据等场景。
名词
数据操作
Line Protocol
语法
InfluxDB使用行协议写入数据点。它是一种基于文本的格式,提供数据点的度量、标记集、字段集和时间戳。
measurementName,tagKey=tagValue fieldKey="fieldValue" 1465839830100400200
--------------- --------------- --------------------- -------------------
| | | |
Measurement Tag set Field set Timestamp
例:
myMeasurement,tag1=value1,tag2=value2 fieldKey="fieldValue" 1556813561098000000
由换行符分隔的行 \ n表示InfluxDB中的单个点。线路协议对空格敏感。
Explore
可进行页面上的筛选,点击script Editor查看执行的语句
可切换数据呈现的样式
查询数据
- 声明数据库:from(bucket:"example-bucket")
- 指定查询范围:|> range(start: -1h)
- 设置筛选条件:|> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system" and r.cpu == "cpu-total")
- 输出结果:yield()
- Flux自动假定在每个脚本的末尾有一个yield()函数,用于输出和可视化数据。只有在同一个Flux查询中包含多个查询时,才需要显式地调用yield()。每一组返回的数据都需要使用yield()函数命名。
完整语句:
from(bucket: "example-bucket")
|> range(start: -15m)
|> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system" and r.cpu == "cpu-total")
|> yield(name: "test")
java开发
引入依赖
<dependency>
<groupId>com.influxdb</groupId>
<artifactId>influxdb-client-java</artifactId>
<version>3.1.0</version>
</dependency>
数据模型
@Data
@Accessors(chain = true)
@Measurement(name = "monitoring_data")
public class MonData {
@Column(tag = true)
private String pointName;
@Column(tag = true)
private String indexName;
@Column private Double value;
@Column(timestamp = true)
private Instant time;
}
@InfluxColumn为自定义注解,用于拼接查询语句构造map函数使用
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.FIELD)
public @interface InfluxColumn {
String value();
}
@Data
public class MonDataDTO {
// tag1名称
@InfluxColumn("pointName")
private String pointName;
// tag2名称
@InfluxColumn("indexName")
private String indexName;
// 时间片开始时间
@InfluxColumn("_start")
private String start;
// 时间片结束时间
@InfluxColumn("_stop")
private String stop;
// 数据产生时间
@InfluxColumn("_time")
private String time;
// 值
@InfluxColumn("_value")
private String value;
}
@Data
public class SearchParams<T> {
// 查询时间范围开始时间
private String start;
// 时间戳字段排序规则,true:降序
private Boolean sortRule = true;
// 查询时间范围结束时间
private String end;
// 时间间隔
private String every;
// 筛选条件
private List<String> filterList;
// map构造的目标类对象
private Class<? extends T> mapClazz;
}
功能类
@Repository
@Slf4j
public class InfluxRepository {
@Autowired private WriteApi writeApi;
@Autowired private QueryApi queryApi;
@Autowired private InfluxdbConfigProp influxdbConfigProp;
/**
* 向influx写入数据
*
* @param data 写入数据实体
*/
public <T> void writeData(T data) {
writeApi.writeMeasurement(
influxdbConfigProp.getBucket(), influxdbConfigProp.getOrg(), WritePrecision.MS, data);
}
/**
* 查询数据
*
* @param params 查询参数
*/
public <T> List<FluxTable> findMonitoringData(SearchParams<T> params) {
StringBuffer queryBuffer = new StringBuffer();
// BUCKET
queryBuffer.append("from(bucket: \"");
queryBuffer.append(influxdbConfigProp.getBucket());
// 时间范围条件
queryBuffer.append("\") \n|> range(start: ");
queryBuffer.append(params.getStart());
queryBuffer.append(", stop: ");
queryBuffer.append(params.getEnd());
queryBuffer.append(")\n");
List<String> filterList = params.getFilterList();
if (!CollectionUtils.isEmpty(filterList)) {
queryBuffer.append(" |> filter(fn: (r) => ");
// 拼接查询条件
for (int i = 0; i < filterList.size(); i++) {
String[] filters = filterList.get(i).split(">");
queryBuffer.append("r[\"");
queryBuffer.append(filters[0]);
queryBuffer.append("\"]");
queryBuffer.append(filters[1]);
if (i < filterList.size() - 1) queryBuffer.append(" and ");
}
queryBuffer.append(")\n");
}
// aggregateWindow函数
queryBuffer.append(" |> aggregateWindow(every: ");
queryBuffer.append(params.getEvery());
queryBuffer.append(",fn: first, createEmpty: true)\n");
// 为查询结果添加排序
queryBuffer.append(" |> sort(columns: [\"_time\"], desc: ");
queryBuffer.append(params.getSortRule().booleanValue());
queryBuffer.append(")\n");
// map函数语句拼接
Class<? extends T> mapClazz = params.getMapClazz();
if (!ObjectUtils.isEmpty(mapClazz)) {
queryBuffer.append(" |> map(");
queryBuffer.append(" fn:(r) => { \n");
queryBuffer.append(" return {\n");
Field[] fields = mapClazz.getDeclaredFields();
// 目标实体字段和influx查询结果字段的映射
Map<String, String> fieldMap = new HashMap<>();
for (Field field : fields) {
InfluxColumn influxColumn = field.getAnnotation(InfluxColumn.class);
if (influxColumn != null) {
fieldMap.put(field.getName(), influxColumn.value());
}
}
// 若有需要映射的字段则构建语句
if (!CollectionUtils.isEmpty(fieldMap)) {
for (String key : fieldMap.keySet()) {
queryBuffer.append(key);
queryBuffer.append(": r[\"");
queryBuffer.append(fieldMap.get(key));
queryBuffer.append("\"],\n");
}
queryBuffer.append("}})\n");
}
}
String influxQl = queryBuffer.toString();
log.info("查询语句, {}", influxQl);
List<FluxTable> queryData = queryApi.query(influxQl, influxdbConfigProp.getOrg());
return queryData;
}
}
@Service
@Slf4j
public class InfluxQueryService {
@Autowired private ObjectMapper objectMapper;
@Autowired private InfluxRepository influxRepository;
/**
* 监测数据查询
*
* @param start 起始范围时间点
* @param end 结束范围时间点
* @param every 时间片
* @param filterList 筛选条件集合(集合内元素例:pointName>csd-001)
* @param clazz 去除数据时map对象映射的类对象
* @param sort 时间字段排序规则
*/
public <T> List<T> findMonitoringDataInFluxDB(
String start,
String end,
String every,
List<String> filterList,
Class<? extends T> clazz,
boolean sort) {
// mainTag和 subTag需要特殊处理,将逗号替换成"|"正则表达
filterList =
filterList.stream()
.map(filter -> StringUtils.replace(filter, ",", "|"))
.collect(Collectors.toList());
SearchParams<T> searchParams = new SearchParams<>();
searchParams.setStart(start);
searchParams.setEnd(end);
searchParams.setEvery(every);
searchParams.setFilterList(filterList);
searchParams.setMapClazz(clazz);
searchParams.setSortRule(sort);
List<FluxTable> fluxTableList = influxRepository.findMonitoringData(searchParams);
return mapFluxData(fluxTableList, clazz);
}
/**
* 解析原始数据
*
* @param data 原始数据
*/
public <T> List<T> mapFluxData(List<FluxTable> data, Class<? extends T> clazz) {
List<T> result = new LinkedList<>();
for (FluxTable ft : data) {
List<FluxRecord> records = ft.getRecords();
for (FluxRecord rc : records) {
try {
T originData =
objectMapper.readValue(objectMapper.writeValueAsString(rc.getValues()), clazz);
result.add(originData);
} catch (JsonProcessingException e) {
log.error("influx查询数据转换为DTO时解析出错");
throw new RuntimeException(e);
}
}
}
return result;
}
}
业务Service构造查询条件,并提供相应的:查询结果实体 => 实体之间的转换方法
/**
* 设备指标监测值
*
* @param start 起始范围时间点
* @param end 结束范围时间点
* @param every 时间片
* @param tagName 设备id
*/
public List<MonDataDTO> getMonitoringData(
String start, String end, String every, String tagName) {
// 筛选条件
List<String> filterList = new ArrayList<>();
filterList.add("_measurement> == \"monitoring_data\"");
filterList.add("tagName> =~/" + tagName + "/");
// 处理时间参数
String startDate;
String endDate;
LocalDate startLocalDate = LocalDate.parse(start).plusDays(-1);
// 一天内的数据 (开始时间的前一天的23点,到结束时间的23点,时区原因查询时时间减去8小时)
// 跨天的数据(开始和结束时间减8小时)
String endTime = (start.equals(end) ? "T15:00:00Z" : "T16:00:00Z");
startDate = startLocalDate + endTime;
endDate = end + endTime;
List<MonDataDTO> dataInFluxDB =
influxQueryService.findMonitoringDataInFluxDB(
startDate, endDate, every, filterList, MonDataDTO.class, false);
return dataInFluxDB;
}
配置类
@Data
@ConfigurationProperties(prefix = "influxdb")
@Component
public class InfluxdbConfigProp {
private String token;
private String bucket;
private String org;
private String url;
}
@Configuration
public class InfluxdbConfig {
@Autowired private InfluxdbConfigProp influxdbConfigProp;
@Bean
public InfluxDBClient influxDBClient() {
InfluxDBClient influxClient =
InfluxDBClientFactory.create(
influxdbConfigProp.getUrl(), influxdbConfigProp.getToken().toCharArray());
influxClient.setLogLevel(LogLevel.BASIC);
return influxClient;
}
@Bean
public WriteApi writeApi(InfluxDBClient influxDBClient) {
WriteOptions writeOptions =
WriteOptions.builder()
.batchSize(5000)
.flushInterval(1000)
.bufferLimit(10000)
.jitterInterval(1000)
.retryInterval(5000)
.build();
return influxDBClient.getWriteApi(writeOptions);
}
@Bean
public QueryApi queryApi(InfluxDBClient influxDBClient) {
return influxDBClient.getQueryApi();
}
}
常用函数
window()
使用window()函数根据时间界限对数据进行分组。window()传递的最常用参数是every,它定义了窗口之间的持续时间。也可以使用其他参数,但是对于本例,将基本数据集窗口化为一分钟窗口。
dataSet |> window(every: 1m)
first()和last()
drop()
删除查询结果的指定列
|> drop(columns: ["host"])
sort()和limit()
排序和分页
|> sort(columns: ["index", "time"], desc: true)
|> limit(n: 10)
n参数为pageSize
timedMovingAverage()
对于表中的每一行,timedMovingAverage()返回当前值和上一个周期(持续时间)中所有行值的平均值。它以每个参数定义的频率返回移动平均线。
|> timedMovingAverage(every: 1h, period: 1h)
aggregateWindow()
|> aggregateWindow(every: 1h, fn: first, createEmpty: true)
每一小时时间片的第一条记录,空数据以null填充
map()
|> map( fn:(r) => {
return {
code: r["code"],
time: r["_time"],
value: r["_value"],
index: r["indexName"]
}
}
)
注意事项
- tag与tag之间用逗号分隔
- field与field之间用逗号分隔
- tag与field之间用空格分隔
- tag都是string类型,不需要引号将value包裹
- tag的值不能有空格
- 写入数据时,若tag和时间戳都相同的多条记录,则最后只会保存一条
本文来自博客园,作者:喵师傅,转载请注明原文链接:https://www.cnblogs.com/wywblogs/articles/16738013.html