基于.NetCore的Redis5.0.3(最新版)快速入门、源码解析、集群搭建与SDK使用【原创】
1、【基础】redis能带给我们什么福利
Redis(Remote Dictionary Server)官网:https://redis.io/
Redis命令:https://redis.io/commands
Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache and message broker. It supports data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes with radius queries and streams. Redis has built-in replication, Lua scripting, LRU eviction, transactions and different levels of on-disk persistence, and provides high availability via Redis Sentinel and automatic partitioning with Redis Cluster. //------------------------------------- Redis是一个开源(BSD许可),内存数据结构存储,用作数据库,缓存和消息代理。 它支持数据结构,如字符串,散列,列表,集合,带有范围查询的排序集,位图,超级日志,具有半径查询和流的地理空间索引。 Redis具有内置复制,Lua脚本,LRU驱逐,事务和不同级别的磁盘持久性,并通过Redis Sentinel提供高可用性并使用Redis Cluster自动分区。
1.1、Redis前世今生
- 最开始使用本机内存的NativeCache(NativeCache无法分布式共享),随着网站规模越大,我们需要一个分布式的缓存产品,Memcache诞生。
-
随着memcache缓存大行其道,互联网规模进一步扩大,对应用程序性能要求越来越高以及应用场景的越来越多 【09年】,比如内存数据库,异构化消息队列 等等,而原来市面上的memcache 暴露了以下几个缺点:
- memcache就是一个巨大的hash表,数据结构单一,我们知道编程语言中数据结构类型众多。
数据结构类型:【List,HashSet, Dictionary, SortDictionary, BitArray, Queue, Stack, SortList。。。。】 - memcache 无法持久化,导致只能作为缓存使用,重启之后数据就会丢失。
-
无法做到规模化的集群,memcache可以使用 一致性hash 的方式做到一个简单的memcahce集群,非常依赖于客户端实现,也并非无损的。
set username jack hash(username)=8亿 ,沿着顺时针走,碰到的第一个server节点就是要存放的节点。。。所以我们非常渴望有一个东西可以解决上面三个问题,自己研发太费时费力,刚好redis就是为了解决这些头疼的问题。
- memcache就是一个巨大的hash表,数据结构单一,我们知道编程语言中数据结构类型众多。
1.2、redis给我们带来了哪些福利
- 概况
可以在redis官网上看到,目前redis支持的数据类型之多,非常丰富:
Redis数据类型 String Bitmap List(双端队列) Set Geo Hash HyperLogLogs Stream SortetSet(SkipList) C#数据类型 String BitArray (LinkedList+Stack+Queue+List) HashSet --- Dictionary --- --- SortDictionary(红黑树)
- 持久化
使用AOF追加模式,RDB模式,以及混合模式,既然能缓存,就可以当做一个memroy db使用。- AOF: 使用大量的操作命令进行数据恢复。
- RDB: 内存快照磁盘化。
- FixMode:混合两种。
- 集群
Redis自带的Cluster集群模式,Sentinel 和 第三方豌豆荚的Codis集群搭建。
2、【搭建】使用centos和docker化快速部署
虚拟机CentOS7安装步骤:https://www.cnblogs.com/wyt007/p/10295834.html
XShell6破解版:链接: https://pan.baidu.com/s/1YtnkN4_yAOU5Dc1j69ltrg 提取码: nchp
2.1、centos7平台的部署
- 安装
首先到Redis官网获取Redis最新下载地址:http://download.redis.io/releases/redis-5.0.3.tar.gz
然后在CentOS7上面进行安装
mkdir /data cd /data wget http://download.redis.io/releases/redis-5.0.3.tar.gz tar xzf redis-5.0.3.tar.gz mv redis-5.0.3 redis cd redis make
如果出现 gcc:命令未找到 ,安装gcc并重新执行 make
yum -y install gcc automake autoconf libtool make //如果以上命令出现[Errno 256] No more mirrors to try.执行下面命令再重新安装gcc yum clean all
如果出现:致命错误:jemalloc/jemalloc.h:没有那个文件或目录,则执行下方命令
make MALLOC=libc
- 这时候我们查看是否成功安装Redis(/data/redis/src/ 目录下有无redis-cli 与redis-server),并将它们拷贝到上级文件夹
cd /data/redis/src/ cp redis-cli ../ cp redis-server ../
- 启动Redis
[root@localhost src]# cd /data/redis/ [root@localhost redis]# ./redis-server ./redis-conf
- 查看端口
netstat -tlnp
- 测试存储
[root@localhost ~]# cd /data/redis/ [root@localhost redis]# ./redis-cli 127.0.0.1:6379> set username jack OK 127.0.0.1:6379> get username "jack" 127.0.0.1:6379> dbsize (integer) 1 127.0.0.1:6379> keys * 1) "username"
- 退出客户端命令
quit
- 配置Redis
Redis启动完成后是无法进行外网访问的,因此我们需要修改redis.conf
protect-mode 保护模式
bind 绑定网卡接口bind 127.0.0.1 => bind 0.0.0.0 protected-mode yes => protected-mode no
现实场景:redis是生产内网部署,对外不开放端口。。。
- 需要密码验证(可选)
修改redis.conf默认参数 # requirepass foobared
连接之后命令 auth <password> - 修改文件存储目录rdb + logfile + aof(可选)
- rdb 修改redis.conf默认参数 dir ./ 文件夹路径
- logfile 修改redis.conf默认参数 logfile "" 文件名称,可以改成“redis.log”
- 后台执行
修改redis.conf默认参数 daemonize no ,改成 daemonize yes
会生成pid文件 /var/run/redis_6379.pid 存放进程号
[root@localhost redis]# ./redis-server ./redis.conf [root@localhost redis]# netstat -tlnp Active Internet connections (only servers) Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp 0 0 0.0.0.0:6379 0.0.0.0:* LISTEN 66042/./redis-serve tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 1/systemd tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN 7748/X tcp 0 0 192.168.122.1:53 0.0.0.0:* LISTEN 7604/dnsmasq tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 7215/sshd tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 7217/cupsd tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 7432/master tcp 0 0 127.0.0.1:6010 0.0.0.0:* LISTEN 9283/sshd: root@pts tcp 0 0 127.0.0.1:6011 0.0.0.0:* LISTEN 11424/sshd: root@pt tcp 0 0 127.0.0.1:6012 0.0.0.0:* LISTEN 63727/sshd: root@pt tcp6 0 0 :::111 :::* LISTEN 1/systemd tcp6 0 0 :::6000 :::* LISTEN 7748/X tcp6 0 0 :::21 :::* LISTEN 9406/vsftpd tcp6 0 0 :::22 :::* LISTEN 7215/sshd tcp6 0 0 ::1:631 :::* LISTEN 7217/cupsd tcp6 0 0 ::1:25 :::* LISTEN 7432/master tcp6 0 0 ::1:6010 :::* LISTEN 9283/sshd: root@pts tcp6 0 0 ::1:6011 :::* LISTEN 11424/sshd: root@pt tcp6 0 0 ::1:6012 :::* LISTEN 63727/sshd: root@pt [root@localhost redis]# tail /var/run/redis_6379.pid 66042
2.2、docker上进行部署
Docker安装步骤:https://www.cnblogs.com/wyt007/p/10295834.html
- 启动Docker
service docker start
- 列出容器内容
docker ps
我们可以看到容器内是空的,我们接下来前往DockerHub下载安装redis(部分内容需要FQ)
- 安装端口并绑定端口
我这里是因为已经在虚拟机安装了Redis,占用了redis的6379端口,所以用外网6378端口映射docker6379端口
安装完成会自动启动
docker run --name some-redis -p 6378:6379 -d redis
这时候在再查看Docker容器
更复杂的配置,应该自己写一个redis.conf,通过docker-compose 部署进去。而不是自己敲命令。
dockerfile需要拷贝redis.conf - 移除docker中的redis
docker kill 90b45b58a571 docker rm 90b45b58a571
3、【SDK】C#的sdk快速操作和两款可视化工具介绍
3.1、StackExchange.Redis
github地址:https://github.com/StackExchange/StackExchange.Redis/
使用文档:https://stackexchange.github.io/StackExchange.Redis/
String的应用 |
web网站上保存用户信息,模拟session。 |
Hash的应用 | 记录每个店铺的数据库连接串。(分库的场景) key: shopid value:connectionstring |
Set的应用 | 判断某一个用户是否在黑名单中。 O(1) |
List的应用 | 消息队列 client -> 短信队列 <- 发送处理程序 -> 运营商 |
- 安装
Install-Package StackExchange.Redis
- 使用示例
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); //////cookie(ui,sessionid) //////redis(sessionid,userinfo) //db.StringSet("sessionid", "jack", TimeSpan.FromSeconds(5)); //while (true) //{ // var info = db.StringGet("sessionid"); // Console.WriteLine(info); // Thread.Sleep(1000); //} ////key: shopID value: connectionstring //db.HashSet("connetions", "1", "mysql://192.168.1.1/mydb"); //db.HashSet("connetions", "2", "mysql://192.168.1.2/mydb"); //db.HashSet("connetions", "3", "mysql://192.168.1.3/mydb"); //db.HashSet("connetions", "4", "mysql://192.168.1.4/mydb"); //db.HashSet("connetions", "5", "mysql://192.168.1.5/mydb"); //Console.WriteLine(db.HashGet("connetions", "3")); ////黑名单 //db.SetAdd("blacklist", "1"); //db.SetAdd("blacklist", "2"); //db.SetAdd("blacklist", "3"); //db.SetAdd("blacklist", "4"); //var r = db.SetContains("blacklist", 40); ////消息队列 //db.ListLeftPush("sms", "18721073333"); //db.ListLeftPush("sms", "18521073333"); //db.ListLeftPush("sms", "18121073033"); //Console.WriteLine(db.ListRightPop("sms")); //Console.WriteLine(db.ListRightPop("sms")); //Console.WriteLine(db.ListRightPop("sms")); Console.ReadKey(); } }
- asp.net core使用redis存储session
Session是我们在web开发中经常使用的对象,它默认是存在本机的,但是在ASP.NET Core中我们可以十分方便的将Session的存储介质改为分布式缓存(Redis)或者数据库(SqlServer)。分布式的缓存可以提高ASP.NET Core 应用的性能和可伸缩性 ,尤其是在托管在云中或服务器场环境中
-
添加引用
Microsoft.Extensions.Caching.Redis
- 配置服务
public void ConfigureServices(IServiceCollection services) { ... //添加了redis作为分布式缓存 services.AddDistributedRedisCache(option => { option.InstanceName = "session"; option.Configuration = "192.168.181.131:6379"; }); //添加session services.AddSession(options => { //options.IdleTimeout = TimeSpan.FromMinutes(10); //session活期时间 //options.Cookie.HttpOnly = true;//设为httponly }); ... } public void Configure(IApplicationBuilder app, IHostingEnvironment env) { ... //使用session app.UseSession(); ... }
- 设置session
//using Microsoft.AspNetCore.Http; HttpContext.Session.SetString("userinfo", "jack");
- 显示数据
@using Microsoft.AspNetCore.Http; @Context.Session.GetString("userinfo") @Context.Session.Id
-
3.2、可视化操作
- RedisClient
官网:https://github.com/caoxinyu/RedisClient - fastoredis
官网:https://fastoredis.com/
- RedisDesktopManager
官网:https://redisdesktop.com/(0.8版本后开始收费)
4、【SDK】StackExchange强类型工具使用和自己动手封装连接池
4.1、StackExchange.Redis的强类型扩展
为什么要使用强类型扩展?我们可以先看一段代码:
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); var userModel = new UserModel() { UserName = "jack", Email = "sdfasdf@qq.com", IsVip = true }; db.StringSet("userinfo", JsonConvert.SerializeObject(userModel)); var info = db.StringGet("userinfo"); var model = JsonConvert.DeserializeObject<UserModel>(info); Console.ReadKey(); } } public class UserModel { public string UserName { get; set; } public string Email { get; set; } public bool IsVip { get; set; } }
要存储数据先要进行序列化成String,然后进行存储,取出时又要进行反序列化,那么有没有更好的方式来处理这个问题呢? StackExchange.Redis.Extensions 为我们提供了很好的扩展
StackExchange.Redis.Extensions githun地址:https://github.com/imperugo/StackExchange.Redis.Extensions
- 安装
Install-Package StackExchange.Redis.Extensions.Core Install-Package StackExchange.Redis.Extensions.Newtonsoft //序列化方式
- 使用
var cacheClient = new StackExchangeRedisCacheClient(redis,new NewtonsoftSerializer()); cacheClient.Add("userinfo", userModel); var model = cacheClient.Get<UserModel>("userinfo");
- 完整代码示例
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); var userModel = new UserModel() { UserName = "jack", Email = "sdfasdf@qq.com", IsVip = true }; db.StringSet("userinfo", JsonConvert.SerializeObject(userModel)); var info = db.StringGet("userinfo"); var model = JsonConvert.DeserializeObject<UserModel>(info); var cacheClient = new StackExchangeRedisCacheClient(redis,new NewtonsoftSerializer()); cacheClient.Add("userinfo", userModel); model = cacheClient.Get<UserModel>("userinfo"); Console.ReadKey(); } } public class UserModel { public string UserName { get; set; } public string Email { get; set; } public bool IsVip { get; set; } }
- 缺点
功能比底层要慢 + 功能要少。 暂时没有Stream
4.2、StackExchange.Redis连接问题
4.2.1、Socket连接过多的问题导致sdk挂掉
- 原因描述:作为实例变量,会有什么后果。。。 如果每次调用都new一下,会有太多的socket。。。 频繁的打开和关闭。。
- 解决办法:
- 全局唯一的connection
- 自己定义connection连接池
4.2.2、自定义connection连接池
- 创建连接池 RedisConnectionPool.cs
public class RedisConnectionPool { private static ConcurrentQueue<ConnectionMultiplexer> connectionPoolQueue = new ConcurrentQueue<ConnectionMultiplexer>(); private static int minConnectionNum; private static int maxConnectionNum; private static string host; private static int port; //通过构造函数 或者 config形式 获取 max,min host,port public static void InitializeConnectionPool() { minConnectionNum = 10; maxConnectionNum = 100; host = "192.168.181.131"; port = 6379; for (int i = 0; i < minConnectionNum; i++) { var client = OpenConnection(host, port); PushConnection(client); } Console.WriteLine($"{0} 个 connection 初始化完毕!"); } /* * 1. 如果说池中没有connection了,那么你需要OpenConnection * * 2. 如果池中获取到了connection,并且isConnected=false,那么直接close * */ public static ConnectionMultiplexer GetConnection() { while (connectionPoolQueue.Count > 0) { connectionPoolQueue.TryDequeue(out ConnectionMultiplexer client); if (!client.IsConnected) { client.Close(); continue; } return client; } return OpenConnection(host, port); } /// <summary> /// 1. 如果 queue的个数 >=max 直接踢掉 /// /// 2. client的IsConnected 如果为false, close /// </summary> /// <param name="client"></param> /// <returns></returns> public static void PushConnection(ConnectionMultiplexer client) { if (connectionPoolQueue.Count >= maxConnectionNum) { client.Close(); return; } if (!client.IsConnected) { client.Close(); return; } connectionPoolQueue.Enqueue(client); } public static ConnectionMultiplexer OpenConnection(string host, int port) { ConnectionMultiplexer client = ConnectionMultiplexer.Connect($"{host}:{port}"); return client; } }
- 使用方法
RedisConnectionPool.InitializeConnectionPool(); for (int m = 0; m < 1000000; m++) { ConnectionMultiplexer client = null; try { client = RedisConnectionPool.GetConnection(); var db = client.GetDatabase(0); db.StringSet("username", "jack"); Console.WriteLine(db.StringGet("username") + " " + m); } finally { if (client != null) { RedisConnectionPool.PushConnection(client); } } //ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); //Console.WriteLine(m); }
5、【内存结构】阅读redis源码中的五大基础对象
源码由Redis官方下载下来并解压,然后用VS2017打开,源码在src文件夹下,redis存储结构:
- RedisServer
源码位置: src/server.h
redisServer 包含16个 redisDb 在 src/server.c 的 mian() 构造函数中,查看 void initServer(void) ,可以看到创建16个DB
我们可以看到 server.dbnum 默认值为16
- RedisDb
源码位置: src/server.h
我们可以看到 dict *dict 数据字典,过期时间,长度等等
- redisObject
源码位置: src/server.h
我们可以看到有个 *ptr 属性,指向 sds(sds.h)、quicklist(quicklist.h)、dict(dict.h)、rax(rax.h)
可以在redis-cli中查看redisObject属性 -
sds
sds => char[] 中了一个封装,把内存优化到了极致
源码位置: sds.h
typedef char *sds; /* Note: sdshdr5 is never used, we just access the flags byte directly. * However is here to document the layout of type 5 SDS strings. */ struct __attribute__ ((__packed__)) sdshdr5 { unsigned char flags; /* 3 lsb of type, and 5 msb of string length */ char buf[]; }; struct __attribute__ ((__packed__)) sdshdr8 { uint8_t len; /* used */ uint8_t alloc; /* excluding the header and null terminator */ unsigned char flags; /* 3 lsb of type, 5 unused bits */ char buf[]; }; struct __attribute__ ((__packed__)) sdshdr16 { uint16_t len; /* used */ uint16_t alloc; /* excluding the header and null terminator */ unsigned char flags; /* 3 lsb of type, 5 unused bits */ char buf[]; }; struct __attribute__ ((__packed__)) sdshdr32 { uint32_t len; /* used */ uint32_t alloc; /* excluding the header and null terminator */ unsigned char flags; /* 3 lsb of type, 5 unused bits */ char buf[]; }; struct __attribute__ ((__packed__)) sdshdr64 { uint64_t len; /* used */ uint64_t alloc; /* excluding the header and null terminator */ unsigned char flags; /* 3 lsb of type, 5 unused bits */ char buf[]; };
-
redisClient
源码位置: src/server.h ,包含三大重要参数:-
redisDb *db 要进行操作的数据库
- int argc 命令的数量
-
robj **argv 命令的所有参数
-
查询示例
set name jack ↓↓↓↓↓↓↓ argv[0]=set argv[1]=name argv[2]=jack ↓↓↓↓↓↓↓ commandTables [ {set => setCommand} {get => getCommand} ]
-
6、【String】字符串命令介绍和源码阅读及秒杀和防重验证sdk实践
6.1、String中常见命令详解
Redis中String命令:https://redis.io/commands#string
Redis命令 | incr | decr | incrby | decrby |
C#命令 | ++ | -- | Interlocked.Incrment | Interlocked.Decrement |
命令示例 | redis> SET mykey "10"
"OK"redis> INCR mykey (integer) 11redis> GET mykey "11" |
redis> SET mykey "10"
"OK"redis> DECR mykey (integer) 9redis> SET mykey "234293482390480948029348230948" "OK"redis> DECR mykey ERR ERR value is not an integer or out of range |
redis> SET mykey "10"
"OK"redis> INCRBY mykey 5 (integer) 15 |
redis> SET mykey "10"
"OK"redis> DECRBY mykey 3 (integer) 7 |
- incr命令的应用场景:【简单的解决秒杀问题】
库存:1000 人数:10w
购买:3000 只放3000进来。
购买:1000
待付款减库存,还是购买成功减库存,这是业务的事情!
用max来进行人员的过滤。。。
简单示例:class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); while (true) { var num = db.StringIncrement("max1"); if (num>3000) { Console.WriteLine("当前请求>3000"); break; } Console.WriteLine(num); } Console.ReadKey(); } }
- SetNx + Expire,Set
应用场景:解决订单场景中的重复提交问题。 【SetNx=Set if Not eXists】如果key存在,那么value不进行复制。。。
setnx token 12345 (处理成功)
setnx token 12345 (处理失败)EXPIRE设置过期时间
转化成Set
说明10秒之内重复SET是不被允许的
c#代码示例:class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); while (true) { var b = db.StringSet("token", "123456", TimeSpan.FromSeconds(10), When.NotExists); Console.WriteLine(b); Thread.Sleep(TimeSpan.FromSeconds(2)); } Console.ReadKey(); } }
6.2、源码解读
本篇示例解读incr,其他请自行参照本篇解读
我们首先查看 src/server.h 中的 redisCommand ,找到 incr 对应的 incrCommand ,然后定位到 t_string.c
void incrCommand(client *c) { incrDecrCommand(c,1);//这里可以看到是+1 }
然后找到 incrDecrCommand 的定义方法
void incrDecrCommand(client *c, long long incr) { long long value, oldvalue; robj *o, *new; o = lookupKeyWrite(c->db,c->argv[1]); if (o != NULL && checkType(c,o,OBJ_STRING)) return; if (getLongLongFromObjectOrReply(c,o,&value,NULL) != C_OK) return; oldvalue = value; if ((incr < 0 && oldvalue < 0 && incr < (LLONG_MIN-oldvalue)) || (incr > 0 && oldvalue > 0 && incr > (LLONG_MAX-oldvalue))) { addReplyError(c,"increment or decrement would overflow"); return; } value += incr; if (o && o->refcount == 1 && o->encoding == OBJ_ENCODING_INT && (value < 0 || value >= OBJ_SHARED_INTEGERS) && value >= LONG_MIN && value <= LONG_MAX) { new = o; o->ptr = (void*)((long)value); } else { new = createStringObjectFromLongLongForValue(value); if (o) { dbOverwrite(c->db,c->argv[1],new); } else { dbAdd(c->db,c->argv[1],new); } } signalModifiedKey(c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_STRING,"incrby",c->argv[1],c->db->id); server.dirty++; addReply(c,shared.colon); addReply(c,new); addReply(c,shared.crlf); }
7、【String】位图命令介绍和黑名单场景应用
7.1、bitmap思想
- 场景示例
customerid: 1-32 都是黑名单用户,那么如何更省内存的存储。
HashSet<int> hashSet=new HashSet<int>(); hashSet.Add(customerid=1) ... hashSet.Add(customerid=32)
- int类型存储:32bit * 32 = 1024bit
- byte类型存储:8bit * 32 = 256bit
- bitmap类型存储:1个int = 32bit
customerid 作为 数组的 position
0,1 标识 标识 该 position 是否拥有值。。。
- 重要场景
如果用户有500W,其中100W是刷单用户。
如果某个店铺的刷单用户<10W,则可以使用 set
如果某个店铺的刷单用户>10W,则要使用 bitmap - bitmap 主要适用于比较小的情况,如果key=21亿,那么要产生21亿/32=几千万个int
普通模式只要一个int就可以了
7.2、setbit, getbit, bitcount 的使用
- setbit:设置当前position到底是0还是1
- getbit:获取当前position的value。
- bitcount: 判断当前有多少黑名单用户
- redis-cli示例:
192.168.181.131:0>setbit blacklist 1 1 //key=1黑名单 "0" 192.168.181.131:0>setbit blacklist 2 0 //key=2不是黑名单 "0" 192.168.181.131:0>setbit blacklist 3 0 "0" 192.168.181.131:0>setbit blacklist 4 1 "0" 192.168.181.131:0>getbit blacklist 2 //查询是否是黑名单 "0" 192.168.181.131:0>getbit blacklist 4 //查询是否是黑名单 "1" 192.168.181.131:0>bitcount blacklist //查询黑名单数量 "2"
- SDK示例:
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); db.StringSetBit("blacklist", 1, true); db.StringSetBit("blacklist", 4, true); Console.WriteLine(db.StringGetBit("blacklist", 1)); Console.WriteLine(db.StringGetBit("blacklist", 2)); Console.WriteLine(db.StringGetBit("blacklist", 3)); Console.WriteLine(db.StringGetBit("blacklist", 4)); Console.ReadKey(); } }
- C#非SDK实现:
class Program { static void Main(string[] args) { BitArray bitArray=new BitArray(8); bitArray[1] = true; bitArray[4] = true; Console.WriteLine(bitArray[1]); Console.WriteLine(bitArray[2]); Console.WriteLine(bitArray[3]); Console.WriteLine(bitArray[4]); Console.ReadKey(); } }
8、【List】常用命令介绍及源码阅读和sdk使用
redis命令(List):https://redis.io/commands#list
8.1、List
- 链表结构解析
List是无环双向列表,相邻节点的查找的复杂度未O(1),如下图所示 - 常见方法
lpush(左进),rpop(右出) ,rpush,lpop。这四种方法,可以作为堆栈(Stack)和链表(LinkList)使用
lpush,rpop 这就是队列
lpush,lpop 这就是堆栈 (括号的语法检查)
8.2、阻塞版的 bxxx
获取队列数据的时方法:
- 写一个死循环(sleep(10ms)) 消息导致cpu过高
- 如果队列没有数据,那么线程卡住(卡住客户端),一直等待获取(阻塞)
192.168.181.131:0>lpush sms 1 "1" 192.168.181.131:0>lpush sms 2 "2" 192.168.181.131:0>lpush sms 3 "3" 192.168.181.131:0>llen sms "3" 192.168.181.131:0>blpop sms 0 1) "sms" 2) "3" 192.168.181.131:0>blpop sms 0 1) "sms" 2) "2" 192.168.181.131:0>blpop sms 0 1) "sms" 2) "1" 192.168.181.131:0>blpop sms 0 Connection error:Execution timeout
8.3、Sdk实践
阻塞和非阻塞 对比一下。。(代码中控制进行非阻塞)
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); db.ListLeftPush("sms", 1); db.ListLeftPush("sms", 2); db.ListLeftPush("sms", 3); db.ListLeftPush("sms", 4); while (true) { var info = db.ListLeftPop("sms"); Console.WriteLine(info); Thread.Sleep(1000); } Console.ReadKey(); } }
8.4、源码解读
我们首先查看 src/quicklist.h 中的 quicklist 我们可以看到由 quicklistNode 组成,包含头指针和尾指针
typedef struct quicklist { quicklistNode *head; quicklistNode *tail; unsigned long count; /* total count of all entries in all ziplists */ unsigned long len; /* number of quicklistNodes */ int fill : 16; /* fill factor for individual nodes */ unsigned int compress : 16; /* depth of end nodes not to compress;0=off */ } quicklist;
然后我们查看 quicklistNode 可以看到 quicklistNode 为当前节点,包含前节点和后一节点
typedef struct quicklistNode { struct quicklistNode *prev; struct quicklistNode *next; unsigned char *zl; unsigned int sz; /* ziplist size in bytes */ unsigned int count : 16; /* count of items in ziplist */ unsigned int encoding : 2; /* RAW==1 or LZF==2 */ unsigned int container : 2; /* NONE==1 or ZIPLIST==2 */ unsigned int recompress : 1; /* was this node previous compressed? */ unsigned int attempted_compress : 1; /* node can't compress; too small */ unsigned int extra : 10; /* more bits to steal for future usage */ } quicklistNode;
我们接下来查看 LLEN 命令的源码,我们首先查看 src/server.c 中的 redisCommand ,找到 llen 对应的 llenCommand ,然后定位到 t_list.c
void llenCommand(client *c) { robj *o = lookupKeyReadOrReply(c,c->argv[1],shared.czero); if (o == NULL || checkType(c,o,OBJ_LIST)) return; addReplyLongLong(c,listTypeLength(o)); }
我们接下来查看 listTypeLength 方法
unsigned long listTypeLength(const robj *subject) { if (subject->encoding == OBJ_ENCODING_QUICKLIST) { return quicklistCount(subject->ptr); } else { serverPanic("Unknown list encoding"); } }
接下来查看 quicklistCount 方法
/* Return cached quicklist count */ unsigned long quicklistCount(const quicklist *ql) { return ql->count; }
于是我们可以看出 LLEN 命令实际上获取的是 ptr 指针指向的 count
我们接下来再看下 LPUSH 命令,我们还是要先查看 src/server.c 中的 lpush 对应的 lpushCommand 命令、
void lpushCommand(client *c) { pushGenericCommand(c,LIST_HEAD); }
然后查看 pushGenericCommand 方法
void pushGenericCommand(client *c, int where) { int j, pushed = 0; robj *lobj = lookupKeyWrite(c->db,c->argv[1]); if (lobj && lobj->type != OBJ_LIST) { addReply(c,shared.wrongtypeerr); return; } for (j = 2; j < c->argc; j++) { if (!lobj) { lobj = createQuicklistObject(); quicklistSetOptions(lobj->ptr, server.list_max_ziplist_size, server.list_compress_depth); dbAdd(c->db,c->argv[1],lobj); } listTypePush(lobj,c->argv[j],where); pushed++; } addReplyLongLong(c, (lobj ? listTypeLength(lobj) : 0)); if (pushed) { char *event = (where == LIST_HEAD) ? "lpush" : "rpush"; signalModifiedKey(c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_LIST,event,c->argv[1],c->db->id); } server.dirty += pushed; }
然后查看 listTypePush 方法
void listTypePush(robj *subject, robj *value, int where) { if (subject->encoding == OBJ_ENCODING_QUICKLIST) { int pos = (where == LIST_HEAD) ? QUICKLIST_HEAD : QUICKLIST_TAIL; value = getDecodedObject(value); size_t len = sdslen(value->ptr); quicklistPush(subject->ptr, value->ptr, len, pos); decrRefCount(value); } else { serverPanic("Unknown list encoding"); } }
然后查看 quicklistPush 方法,可以看到加入了头或者尾
/* Wrapper to allow argument-based switching between HEAD/TAIL pop */ void quicklistPush(quicklist *quicklist, void *value, const size_t sz, int where) { if (where == QUICKLIST_HEAD) { quicklistPushHead(quicklist, value, sz); } else if (where == QUICKLIST_TAIL) { quicklistPushTail(quicklist, value, sz); } }
我们可以查看一下 quicklistPushHead ,可以看到count进行可+1
/* Add new entry to head node of quicklist. * * Returns 0 if used existing head. * Returns 1 if new head created. */ int quicklistPushHead(quicklist *quicklist, void *value, size_t sz) { quicklistNode *orig_head = quicklist->head; if (likely( _quicklistNodeAllowInsert(quicklist->head, quicklist->fill, sz))) { quicklist->head->zl = ziplistPush(quicklist->head->zl, value, sz, ZIPLIST_HEAD); quicklistNodeUpdateSz(quicklist->head); } else { quicklistNode *node = quicklistCreateNode(); node->zl = ziplistPush(ziplistNew(), value, sz, ZIPLIST_HEAD); quicklistNodeUpdateSz(node); _quicklistInsertNodeBefore(quicklist, quicklist->head, node); } quicklist->count++; quicklist->head->count++; return (orig_head != quicklist->head); }
9、【Hash】哈希命令介绍和分库连接串存储及源码阅读
9.1、Hash的底层结构
redis的哈希对象的底层存储可以使用ziplist(压缩列表)和hashtable。当hash对象可以同时满足一下两个条件时,哈希对象使用ziplist编码。
- 哈希对象保存的所有键值对的键和值的字符串长度都小于64字节
- 哈希对象保存的键值对数量小于512个
redis的hash架构就是标准的hashtab的结构,通过挂链解决冲突问题。
类比成C#:
Dictionary<string,string> dict=new Dictionary<string,string>(); dict.Add("username","jack"); //假设hash(username) = 100 //table[100]=dictEntry(username,jack,next ) => model dict.Add("password","12345"); //假设hash(password) = 100 //hash冲突进行挂链 //table[100]= dictEntry(pasword,12345,next ) -> dictEntry(username,jack,next ) var info= dict["username"]; info=jack;
可以看出next的作用是将冲突的hash进行挂链
9.2、使用常用的hash命令
Hash命令地址:https://redis.io/commands#hash
常用的Hash命令:hset,hget,hdel,hlen,hexists,hkeys,hvals,hgetall
- 命令简单使用
127.0.0.1:6379> flushdb OK 127.0.0.1:6379> hset conn 1 mysql://1 (integer) 1 127.0.0.1:6379> hset conn 2 mysql://2 (integer) 1 127.0.0.1:6379> hlen conn (integer) 2 127.0.0.1:6379> hexists conn 2 (integer) 1 127.0.0.1:6379> hexists conn 3 (integer) 0 127.0.0.1:6379> hget conn 2 "mysql://2" 127.0.0.1:6379> hdel conn 2 (integer) 1 127.0.0.1:6379> hlen conn (integer) 1 127.0.0.1:6379> hset conn 3 mysql://3 (integer) 1 127.0.0.1:6379> hlen conn (integer) 2 127.0.0.1:6379> hkeys conn 1) "1" 2) "3" 127.0.0.1:6379> hvals conn 1) "mysql://1" 2) "mysql://3" 127.0.0.1:6379> hgetall conn 1) "1" 2) "mysql://1" 3) "3" 4) "mysql://3"
9.3、SDK的使用
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); db.HashSet("conn", 10, "mysql://10"); var info = db.HashGet("conn", 10); Console.WriteLine(info); var len = db.HashLength("conn"); Console.WriteLine(len); var arr = db.HashKeys("conn"); Console.WriteLine(string.Join(",", arr)); Console.ReadKey(); } }
9.4、源码解读
我们首先查看 src/dict.h 头文件中的 dict 我们可以看到由数组结构 dictht 组成
typedef struct dict { dictType *type; void *privdata; dictht ht[2]; long rehashidx; /* rehashing not in progress if rehashidx == -1 */ unsigned long iterators; /* number of iterators currently running */ } dict;
然后我们查看 dictht 包含 dictEntry
/* This is our hash table structure. Every dictionary has two of this as we * implement incremental rehashing, for the old to the new table. */ typedef struct dictht { dictEntry **table; unsigned long size; //开辟的大小空间 unsigned long sizemask; //求余使用 unsigned long used; //实际使用的大小空间 } dictht;
然后我们查看 dictEntry 、
typedef struct dictEntry { void *key; union { void *val; uint64_t u64; int64_t s64; double d; } v; struct dictEntry *next; //挂链使用 } dictEntry;
接下来我们查看 HLEN 命令,我们还是要先查看 src/server.c 中的 hlen 对应的 hlenCommand 命令
void hlenCommand(client *c) { robj *o; if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,o,OBJ_HASH)) return; addReplyLongLong(c,hashTypeLength(o)); }
然后我们接下来查看获取hash对象长度的 hashTypeLength 方法
/* Return the number of elements in a hash. */ unsigned long hashTypeLength(const robj *o) { unsigned long length = ULONG_MAX; if (o->encoding == OBJ_ENCODING_ZIPLIST) { length = ziplistLen(o->ptr) / 2; } else if (o->encoding == OBJ_ENCODING_HT) { length = dictSize((const dict*)o->ptr); } else { serverPanic("Unknown hash encoding"); } return length; }
然后查看 dictSize 方法查看计算逻辑
#define dictSize(d) ((d)->ht[0].used+(d)->ht[1].used)
可以看到将两个 dictht 数组中的 used 相加,得到 hlen 结果
我们接下来再看下 HSET 命令,我们还是要先查看 src/server.c 中的 hset 对应的 hsetCommand 命令
void hsetCommand(client *c) { int i, created = 0; robj *o; if ((c->argc % 2) == 1) { addReplyError(c,"wrong number of arguments for HMSET"); return; } if ((o = hashTypeLookupWriteOrCreate(c,c->argv[1])) == NULL) return; hashTypeTryConversion(o,c->argv,2,c->argc-1); for (i = 2; i < c->argc; i += 2) //遍历hset的两个参数 created += !hashTypeSet(o,c->argv[i]->ptr,c->argv[i+1]->ptr,HASH_SET_COPY); /* HMSET (deprecated) and HSET return value is different. */ char *cmdname = c->argv[0]->ptr; if (cmdname[1] == 's' || cmdname[1] == 'S') { /* HSET */ addReplyLongLong(c, created); } else { /* HMSET */ addReply(c, shared.ok); } signalModifiedKey(c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_HASH,"hset",c->argv[1],c->db->id); server.dirty++; }
然后我们查看 hashTypeSet 方法
int hashTypeSet(robj *o, sds field, sds value, int flags) { int update = 0; //判断是否是压缩类型 if (o->encoding == OBJ_ENCODING_ZIPLIST) { unsigned char *zl, *fptr, *vptr; zl = o->ptr; fptr = ziplistIndex(zl, ZIPLIST_HEAD); if (fptr != NULL) { fptr = ziplistFind(fptr, (unsigned char*)field, sdslen(field), 1); if (fptr != NULL) { /* Grab pointer to the value (fptr points to the field) */ vptr = ziplistNext(zl, fptr); serverAssert(vptr != NULL); update = 1; /* Delete value */ zl = ziplistDelete(zl, &vptr); /* Insert new value */ zl = ziplistInsert(zl, vptr, (unsigned char*)value, sdslen(value)); } } if (!update) { /* Push new field/value pair onto the tail of the ziplist */ zl = ziplistPush(zl, (unsigned char*)field, sdslen(field), ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)value, sdslen(value), ZIPLIST_TAIL); } o->ptr = zl; /* Check if the ziplist needs to be converted to a hash table */ if (hashTypeLength(o) > server.hash_max_ziplist_entries) hashTypeConvert(o, OBJ_ENCODING_HT); } else if (o->encoding == OBJ_ENCODING_HT) { dictEntry *de = dictFind(o->ptr,field);//hash(field)=int查看dictEntry是否有这个position if (de) { sdsfree(dictGetVal(de)); if (flags & HASH_SET_TAKE_VALUE) { dictGetVal(de) = value; value = NULL; } else { dictGetVal(de) = sdsdup(value); } update = 1; } else { sds f,v; if (flags & HASH_SET_TAKE_FIELD) { f = field; field = NULL; } else { f = sdsdup(field); } if (flags & HASH_SET_TAKE_VALUE) { v = value; value = NULL; } else { v = sdsdup(value); } dictAdd(o->ptr,f,v); } } else { serverPanic("Unknown hash encoding"); } /* Free SDS strings we did not referenced elsewhere if the flags * want this function to be responsible. */ if (flags & HASH_SET_TAKE_FIELD && field) sdsfree(field); if (flags & HASH_SET_TAKE_VALUE && value) sdsfree(value); return update; }
然后查看 dictFind 方法
static dictEntry *dictFind(dict *ht, const void *key) { dictEntry *he; unsigned int h; if (ht->size == 0) return NULL; h = dictHashKey(ht, key) & ht->sizemask;//求余取hash值 he = ht->table[h];//到table中进行查找 while(he) {//如果存在则还要进行挂链查找 if (dictCompareHashKeys(ht, key, he->key)) return he; he = he->next; } return NULL; }
然后查看 dictHashKey 方法
#define dictHashKey(ht, key) (ht)->type->hashFunction(key)
我们查看 dictAdd 方法
/* Add an element to the target hash table */ static int dictAdd(dict *ht, void *key, void *val) { int index; dictEntry *entry; /* Get the index of the new element, or -1 if * the element already exists. */ if ((index = _dictKeyIndex(ht, key)) == -1) return DICT_ERR; /* Allocates the memory and stores key */ entry = malloc(sizeof(*entry));//后进来的放在前面 entry->next = ht->table[index]; ht->table[index] = entry;//将实体放在table的对应索引中去 /* Set the hash entry fields. */ dictSetHashKey(ht, entry, key); dictSetHashVal(ht, entry, val); ht->used++; //最终将used++ return DICT_OK; }
10、【Set,HyperLogLog】常用命令介绍和sdk使用
10.1、理解Set的底层数据结构
Set 应用场景: 黑名单。
Set 底层就是用了dict。
[key=xxx,value=null]
10.2、常用set命令
sadd(增加),sismember(是否包含),scard(统计个数),srem(删除),smembers(列出值)
server.natappfree.cc:0>sadd blacklist 1 "1" server.natappfree.cc:0>sadd blacklist 2 "1" server.natappfree.cc:0>sismember blacklist 2 "1" server.natappfree.cc:0>sismember blacklist 3 "0" server.natappfree.cc:0>scard blacklist "2" server.natappfree.cc:0>sadd blacklist 30 "1" server.natappfree.cc:0>scard blacklist "3" server.natappfree.cc:0>smembers blacklist 1) "1" 2) "2" 3) "30" server.natappfree.cc:0>srem blacklist 2 "1" server.natappfree.cc:0>smembers blacklist 1) "1" 2) "30"
10.3、sdk操作
static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("server.natappfree.cc:39767"); IDatabase db = redis.GetDatabase(0); db.SetAdd("blacklist", "2"); var arr = db.SetMembers("blacklist"); Console.WriteLine(string.Join(",", arr)); var len = db.SetLength("blacklist"); Console.WriteLine($"len={len}"); db.SetRemove("blacklist", "1"); Console.WriteLine(string.Join(",", db.SetMembers("blacklist"))); Console.ReadKey(); }
10.4、源码阅读
- scard(统计个数)源码
我们首先查看 SCARD 命令,我们还是要先查看 src/server.c 中的 scard 对应的 scardCommand 命令
void scardCommand(client *c) { robj *o; if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,o,OBJ_SET)) return; addReplyLongLong(c,setTypeSize(o)); }
然后我们查看 setTypeSize 方法
unsigned long setTypeSize(const robj *subject) { if (subject->encoding == OBJ_ENCODING_HT) { return dictSize((const dict*)subject->ptr); } else if (subject->encoding == OBJ_ENCODING_INTSET) { return intsetLen((const intset*)subject->ptr); } else { serverPanic("Unknown set encoding"); } }
然后我们查看 dictSize 方法
#define dictSize(d) ((d)->ht[0].used+(d)->ht[1].used)
这样就侧面印证了也是字典结构
- sadd(增加)源码
我们首先查看 SCARD 命令,我们还是要先查看 src/server.c 中的 sadd 对应的 saddCommand 命令
void saddCommand(client *c) { robj *set; int j, added = 0; set = lookupKeyWrite(c->db,c->argv[1]); if (set == NULL) { set = setTypeCreate(c->argv[2]->ptr); dbAdd(c->db,c->argv[1],set); } else { if (set->type != OBJ_SET) { addReply(c,shared.wrongtypeerr); return; } } for (j = 2; j < c->argc; j++) {//遍历多有的值,可以添加多个值 if (setTypeAdd(set,c->argv[j]->ptr)) added++; } if (added) { signalModifiedKey(c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_SET,"sadd",c->argv[1],c->db->id); } server.dirty += added; addReplyLongLong(c,added); }
我们接下来查看 setTypeAdd 方法
/* Add the specified value into a set. * * If the value was already member of the set, nothing is done and 0 is * returned, otherwise the new element is added and 1 is returned. */ int setTypeAdd(robj *subject, sds value) { long long llval; if (subject->encoding == OBJ_ENCODING_HT) { dict *ht = subject->ptr; dictEntry *de = dictAddRaw(ht,value,NULL); if (de) { dictSetKey(ht,de,sdsdup(value));//添加key dictSetVal(ht,de,NULL);//添加value为null,所以这是内有值得hash字典 return 1; } } else if (subject->encoding == OBJ_ENCODING_INTSET) { if (isSdsRepresentableAsLongLong(value,&llval) == C_OK) { uint8_t success = 0; subject->ptr = intsetAdd(subject->ptr,llval,&success); if (success) { /* Convert to regular set when the intset contains * too many entries. */ if (intsetLen(subject->ptr) > server.set_max_intset_entries) setTypeConvert(subject,OBJ_ENCODING_HT); return 1; } } else { /* Failed to get integer from object, convert to regular set. */ setTypeConvert(subject,OBJ_ENCODING_HT); /* The set *was* an intset and this value is not integer * encodable, so dictAdd should always work. */ serverAssert(dictAdd(subject->ptr,sdsdup(value),NULL) == DICT_OK); return 1; } } else { serverPanic("Unknown set encoding"); } return 0; }
10.5、HyperLogLogs统计
命令文档地址:https://redis.io/commands#hyperloglog
- 概况
比如我有存储数据3,3,1,5 ,那么基数(去除重复后统计数)=3
优点:特别能节省空间,redis: 12k的空间,就能处理long个数据。 2的64次方 个数据(字符,数字)
只能处理count统计,有一定的误差,误差率在 0.8%。
原理: 就是使用数学中的 概率算法,不存储数据本身,用 概率函数 预估基数值。f(x)=xxx.
250万 int = 1M
2.5亿 int 100M - pfadd, pfcount 命令使用
server.natappfree.cc:0>pfadd p1 1 "1" server.natappfree.cc:0>pfadd p1 2 "1" server.natappfree.cc:0>pfadd p1 1 "0" server.natappfree.cc:0>pfcount p1 "2"
11、【SortedSet】跳跃表原理分析和topK场景中sdk应用
用途:用于范围查找。。 10-100 的人数等等。。。
11.1、理解SortedSet底层结构 (skiplist)
跳跃表。 (本质上是解决查找的一个问题)
树结构: avl,红黑树,伸展树。
链表结构: 层级链表
<1> 有序的链表 (二分查找)
level1: O(N)
level1: 10 - 46 4次
level 2: 3次
leve1 3: -
level1: 做汽車: 上海 - 镇江 -南京 - 石家庄 - 北京 (100站)
level2: 做高铁: 上海 - 南京 - 天津 - 北京 (10站)
level3: 做飞机: 上海 - 北京 (1站)
11.2、源码对照
- zskiplist
我们首先查看 zskiplist 方法,我们还是要先查看 src/server.c 中的对应方法
typedef struct zskiplist { struct zskiplistNode *header, *tail; //头尾节点 unsigned long length; int level; } zskiplist;
我们接下来查看 zskiplistNode 方法
/* ZSETs use a specialized version of Skiplists */ typedef struct zskiplistNode { sds ele; //原色 double score; //得分,类似于权重 struct zskiplistNode *backward; //回退指针 struct zskiplistLevel { struct zskiplistNode *forward; //向前指针 unsigned long span; //跳跃节点的区间 } level[]; } zskiplistNode;
11.3、应用场景介绍及sdk操作
首先我们初始化消费者客户的消费积分
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); var rand = new Random(); for (int i = 1; i <= 10000; i++) { var customerID = i; var totalTradeMoney = rand.Next(10, 10000); db.SortedSetAdd("shop", i, totalTradeMoney); } Console.WriteLine("插入成功!"); Console.ReadKey(); } }
统计积分范围个数
192.168.181.131:0>zcount shop 500 1000 "514"
新增一个用户的积分
192.168.181.131:0>zadd shop 1 10001 "1"
删除一个用户的积分
192.168.181.131:0>zrem shop 10001 "1"
统计所有用户数量
192.168.181.131:0>zcard shop "10000"
查询排序后10个
192.168.181.131:0>zrange shop 0 9 1) "5593" 2) "1459" 3) "2811" 4) "5043" 5) "5750" 6) "6601" 7) "337" 8) "7276" 9) "2917" 10) "6990" 192.168.181.131:0>zrange shop 0 9 with192.168.181.131:0>scores 1) "5593" 2) "11" 3) "1459" 4) "13" 5) "2811" 6) "15" 7) "5043" 8) "15" 9) "5750" 10) "15" 11) "6601" 12) "15" 13) "337" 14) "17" 15) "7276" 16) "17" 17) "2917" 18) "18" 19) "6990" 20) "19"
查询top10
192.168.181.131:0>zrevrange shop 0 9 1) "4907" 2) "9796" 3) "6035" 4) "4261" 5) "2028" 6) "4611" 7) "4612" 8) "1399" 9) "2786" 10) "2696" 192.168.181.131:0>zrevrange shop 0 9 withscores 1) "4907" 2) "9999" 3) "9796" 4) "9998" 5) "6035" 6) "9995" 7) "4261" 8) "9995" 9) "2028" 10) "9995" 11) "4611" 12) "9994" 13) "4612" 14) "9992" 15) "1399" 16) "9992" 17) "2786" 18) "9990" 19) "2696" 20) "9989"
查询排名
192.168.181.131:0>zrank shop192.168.181.131:0> 60 "9223"
实现业务逻辑:判断某一个用户是否在消费力前 25 % 的人群,如果是,就是优质客户了。(老客户)
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); var len = db.SortedSetLength("shop"); var customerRank = len * 0.25; // 高端客户 var customerID = 60; var dbRank = db.SortedSetRank("shop", customerID, Order.Descending); Console.ReadKey(); } }
实现业务逻辑:获取top10%的客户,专门做重点维护。
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); var len = db.SortedSetLength("shop"); var top10 = len * 0.1; var vals = db.SortedSetRangeByRankWithScores("shop", order: Order.Descending); Console.ReadKey(); } }
12、【序列化】理解redis的三大序列化存储机制
12.1、RDB (Redis Database)
默认存储文件: dump.rdb
数据库快照,加载速度快。redis意外退出会丢数据。
snapshot: 历史时间点上的某一刻的全量数据。
我们可以查看 redis.conf 中的设置内存刷新数据到磁盘的触发点
# Save the DB on disk: # # save <seconds> <changes> # # Will save the DB if both the given number of seconds and the given # number of write operations against the DB occurred. # # In the example below the behaviour will be to save: # after 900 sec (15 min) if at least 1 key changed # after 300 sec (5 min) if at least 10 keys changed # after 60 sec if at least 10000 keys changed # # Note: you can disable saving completely by commenting out all "save" lines. # # It is also possible to remove all the previously configured save # points by adding a save directive with a single empty string argument # like in the following example: # # save "" save 900 1 //900秒内有1个数据改变则触发 save 300 10 //300秒内有10个数据改变则触发 save 60 10000 //60秒内有10000个数据改变则触发
也可以修改 redis.conf 中设置的保存文件名
# The filename where to dump the DB dbfilename dump.rdb
我们来模拟一下数据
./redis-server ./redis.conf set username jack kill -9 50565 ./redis-server ./redis.conf get username (nil)
查看dump文件
[root@localhost redis]# od -c ./mydata/dump.rdb 0000000 R E D I S 0 0 0 9 372 \t r e d i s 0000020 - v e r 005 5 . 0 . 3 372 \n r e d i 0000040 s - b i t s 300 @ 372 005 c t i m e 302 0000060 271 226 N \ 372 \b u s e d - m e m 302 @ 0000100 347 \r \0 372 \f a o f - p r e a m b l 0000120 e 300 \0 377 t 344 312 Z Y 363 323 231 0000134
使用redis工具查看dump文件
[root@localhost redis]# ./src/redis-check-rdb ./mydata/dump.rdb [offset 0] Checking RDB file ./mydata/dump.rdb [offset 26] AUX FIELD redis-ver = '5.0.3' [offset 40] AUX FIELD redis-bits = '64' [offset 52] AUX FIELD ctime = '1548654265' [offset 67] AUX FIELD used-mem = '911168' [offset 83] AUX FIELD aof-preamble = '0' [offset 92] Checksum OK [offset 92] \o/ RDB looks OK! \o/ [info] 0 keys read [info] 0 expires [info] 0 already expired
12.2、AOF (Append Only File)
我们可以查看 redis.conf 中的设置内存刷新数据附加的触发点
# no: don't fsync, just let the OS flush the data when it wants. Faster. # always: fsync after every write to the append only log. Slow, Safest. # everysec: fsync only one time every second. Compromise. # # The default is "everysec", as that's usually the right compromise between # speed and data safety. It's up to you to understand if you can relax this to # "no" that will let the operating system flush the output buffer when # it wants, for better performances (but if you can live with the idea of # some data loss consider the default persistence mode that's snapshotting), # or on the contrary, use "always" that's very slow but a bit safer than # everysec. # # More details please check the following article: # http://antirez.com/post/redis-persistence-demystified.html # # If unsure, use "everysec". # appendfsync always //来一条附加一条到disk appendfsync everysec //每秒附加一条到disk # appendfsync no //由操作系统来决定
接下来我们关闭RDB,开启AOF
#save 900 1 #save 300 10 #save 60 10000 appendonly yes
然后进行数据存储
127.0.0.1:6379> set username jack OK 127.0.0.1:6379> set password 12345 OK
查看生成的 appendonly.aof 文件
[root@localhost mydata]# cat appendonly.aof *2 $6 SELECT $1 0 *3 $3 set $8 username $4 jack *3 $3 set $8 password $5 12345
AOF:加载慢,丢失数据少
RDB:加载快,丢失数据多
12.3、混合模式rdb + aof 模式
既保证加载速度快,有保证了丢失数据少。
如何开启?我们可以修改 redis.conf 中的设置内存刷新数据到磁盘的触发点
# When rewriting the AOF file, Redis is able to use an RDB preamble in the # AOF file for faster rewrites and recoveries. When this option is turned # on the rewritten AOF file is composed of two different stanzas: # # [RDB file][AOF tail] # # When loading Redis recognizes that the AOF file starts with the "REDIS" # string and loads the prefixed RDB file, and continues loading the AOF # tail. aof-use-rdb-preamble yes
我们接下来输入存储数据
127.0.0.1:6379> flushall OK 127.0.0.1:6379> set username jack OK 127.0.0.1:6379> set password 12345 OK
这时候 appendonly.aof 中会被追加存储命令信息
[root@localhost redis]# cat appendonly.aof *2 $6 SELECT $1 0 *1 $8 flushall *3 $3 set $8 username $4 jack *3 $3 set $8 password $5 12345 *3 $3 set $8 username $4 jack *3 $3 set $8 password $5 12345 *1 $8 flushall *3 $3 set $8 username $4 jack *3 $3 set $8 password $5 12345
接下来执行 bgrewriteaof 命令将aof文件内容写入rdb
127.0.0.1:6379> bgrewriteaof Background append only file rewriting started
这时候再查看 appendonly.aof
[root@localhost redis]# cat appendonly.aof REDIS0009 redis-ver5.0.3 redis-bitse·Nused-memÈ 𮤭preamblepasswordusernamejackÿȵ
12.4、源码解析
- rdb源码
查看 rdbSaveRio 方法,该方法位于 src/rdb.c 中
/* Produces a dump of the database in RDB format sending it to the specified * Redis I/O channel. On success C_OK is returned, otherwise C_ERR * is returned and part of the output, or all the output, can be * missing because of I/O errors. * * When the function returns C_ERR and if 'error' is not NULL, the * integer pointed by 'error' is set to the value of errno just after the I/O * error. */ int rdbSaveRio(rio *rdb, int *error, int flags, rdbSaveInfo *rsi) { dictIterator *di = NULL; dictEntry *de; char magic[10]; int j; uint64_t cksum; size_t processed = 0; if (server.rdb_checksum) rdb->update_cksum = rioGenericUpdateChecksum; snprintf(magic,sizeof(magic),"REDIS%04d",RDB_VERSION); if (rdbWriteRaw(rdb,magic,9) == -1) goto werr; if (rdbSaveInfoAuxFields(rdb,flags,rsi) == -1) goto werr; for (j = 0; j < server.dbnum; j++) {//for循环16个DB redisDb *db = server.db+j; dict *d = db->dict;//拿出所有的Key if (dictSize(d) == 0) continue; di = dictGetSafeIterator(d); /* Write the SELECT DB opcode */ if (rdbSaveType(rdb,RDB_OPCODE_SELECTDB) == -1) goto werr; if (rdbSaveLen(rdb,j) == -1) goto werr; /* Write the RESIZE DB opcode. We trim the size to UINT32_MAX, which * is currently the largest type we are able to represent in RDB sizes. * However this does not limit the actual size of the DB to load since * these sizes are just hints to resize the hash tables. */ uint64_t db_size, expires_size; db_size = dictSize(db->dict); expires_size = dictSize(db->expires); if (rdbSaveType(rdb,RDB_OPCODE_RESIZEDB) == -1) goto werr; if (rdbSaveLen(rdb,db_size) == -1) goto werr; if (rdbSaveLen(rdb,expires_size) == -1) goto werr; /* Iterate this DB writing every entry */ while((de = dictNext(di)) != NULL) { sds keystr = dictGetKey(de); robj key, *o = dictGetVal(de); long long expire; initStaticStringObject(key,keystr); expire = getExpire(db,&key); if (rdbSaveKeyValuePair(rdb,&key,o,expire) == -1) goto werr; /* When this RDB is produced as part of an AOF rewrite, move * accumulated diff from parent to child while rewriting in * order to have a smaller final write. */ if (flags & RDB_SAVE_AOF_PREAMBLE && rdb->processed_bytes > processed+AOF_READ_DIFF_INTERVAL_BYTES) { processed = rdb->processed_bytes; aofReadDiffFromParent(); } } dictReleaseIterator(di); di = NULL; /* So that we don't release it again on error. */ } /* If we are storing the replication information on disk, persist * the script cache as well: on successful PSYNC after a restart, we need * to be able to process any EVALSHA inside the replication backlog the * master will send us. */ if (rsi && dictSize(server.lua_scripts)) { di = dictGetIterator(server.lua_scripts); while((de = dictNext(di)) != NULL) { robj *body = dictGetVal(de); if (rdbSaveAuxField(rdb,"lua",3,body->ptr,sdslen(body->ptr)) == -1) goto werr; } dictReleaseIterator(di); di = NULL; /* So that we don't release it again on error. */ } /* EOF opcode */ if (rdbSaveType(rdb,RDB_OPCODE_EOF) == -1) goto werr; /* CRC64 checksum. It will be zero if checksum computation is disabled, the * loading code skips the check in this case. */ cksum = rdb->cksum; memrev64ifbe(&cksum); if (rioWrite(rdb,&cksum,8) == 0) goto werr; return C_OK; werr: if (error) *error = errno; if (di) dictReleaseIterator(di); return C_ERR; }
- aof源码
查看 rewriteAppendOnlyFile 方法,该方法位于 src/aof.c 中
/* Write a sequence of commands able to fully rebuild the dataset into * "filename". Used both by REWRITEAOF and BGREWRITEAOF. * * In order to minimize the number of commands needed in the rewritten * log Redis uses variadic commands when possible, such as RPUSH, SADD * and ZADD. However at max AOF_REWRITE_ITEMS_PER_CMD items per time * are inserted using a single command. */ int rewriteAppendOnlyFile(char *filename) { rio aof; FILE *fp; char tmpfile[256]; char byte; /* Note that we have to use a different temp name here compared to the * one used by rewriteAppendOnlyFileBackground() function. */ snprintf(tmpfile,256,"temp-rewriteaof-%d.aof", (int) getpid()); fp = fopen(tmpfile,"w"); if (!fp) { serverLog(LL_WARNING, "Opening the temp file for AOF rewrite in rewriteAppendOnlyFile(): %s", strerror(errno)); return C_ERR; } server.aof_child_diff = sdsempty(); rioInitWithFile(&aof,fp); if (server.aof_rewrite_incremental_fsync) rioSetAutoSync(&aof,REDIS_AUTOSYNC_BYTES); if (server.aof_use_rdb_preamble) {//判断是否设置了aof-use-rdb-preamble yes int error; if (rdbSaveRio(&aof,&error,RDB_SAVE_AOF_PREAMBLE,NULL) == C_ERR) { errno = error; goto werr; } } else { if (rewriteAppendOnlyFileRio(&aof) == C_ERR) goto werr; } /* Do an initial slow fsync here while the parent is still sending * data, in order to make the next final fsync faster. */ if (fflush(fp) == EOF) goto werr; if (fsync(fileno(fp)) == -1) goto werr; /* Read again a few times to get more data from the parent. * We can't read forever (the server may receive data from clients * faster than it is able to send data to the child), so we try to read * some more data in a loop as soon as there is a good chance more data * will come. If it looks like we are wasting time, we abort (this * happens after 20 ms without new data). */ int nodata = 0; mstime_t start = mstime(); while(mstime()-start < 1000 && nodata < 20) { if (aeWait(server.aof_pipe_read_data_from_parent, AE_READABLE, 1) <= 0) { nodata++; continue; } nodata = 0; /* Start counting from zero, we stop on N *contiguous* timeouts. */ aofReadDiffFromParent(); } /* Ask the master to stop sending diffs. */ if (write(server.aof_pipe_write_ack_to_parent,"!",1) != 1) goto werr; if (anetNonBlock(NULL,server.aof_pipe_read_ack_from_parent) != ANET_OK) goto werr; /* We read the ACK from the server using a 10 seconds timeout. Normally * it should reply ASAP, but just in case we lose its reply, we are sure * the child will eventually get terminated. */ if (syncRead(server.aof_pipe_read_ack_from_parent,&byte,1,5000) != 1 || byte != '!') goto werr; serverLog(LL_NOTICE,"Parent agreed to stop sending diffs. Finalizing AOF..."); /* Read the final diff if any. */ aofReadDiffFromParent(); /* Write the received diff to the file. */ serverLog(LL_NOTICE, "Concatenating %.2f MB of AOF diff received from parent.", (double) sdslen(server.aof_child_diff) / (1024*1024)); if (rioWrite(&aof,server.aof_child_diff,sdslen(server.aof_child_diff)) == 0) goto werr; /* Make sure data will not remain on the OS's output buffers */ if (fflush(fp) == EOF) goto werr; if (fsync(fileno(fp)) == -1) goto werr; if (fclose(fp) == EOF) goto werr; /* Use RENAME to make sure the DB file is changed atomically only * if the generate DB file is ok. */ if (rename(tmpfile,filename) == -1) { serverLog(LL_WARNING,"Error moving temp append only file on the final destination: %s", strerror(errno)); unlink(tmpfile); return C_ERR; } serverLog(LL_NOTICE,"SYNC append only file rewrite performed"); return C_OK; werr: serverLog(LL_WARNING,"Write error writing append only file on disk: %s", strerror(errno)); fclose(fp); unlink(tmpfile); return C_ERR; }
13、【PubSub】发布订阅模式命令介绍和sdk实战
13.1、概述
发布订阅模式:类似于观察者模式,比如用户下单之后,通过pubsub讲所有订阅这个主题的subscribe发送消息。
13.2、命令实现
命令地址:https://redis.io/commands#pubsub
常用功能:publish(发布),subscribe(订阅),psubcribe(模式订阅)
- subscribe (用2个客户端进行订阅)
127.0.0.1:6379> subscribe order Reading messages... (press Ctrl-C to quit) 1) "subscribe" 2) "order" 3) (integer) 1
-
publish (用一个客户端进行发发送)
[root@localhost redis]# ./redis-cli 127.0.0.1:6379> publish order trade1 (integer) 2 //显示发送给了2个订阅者
- 这时候查看订阅的客户端,发现已经收到消息
127.0.0.1:6379> subscribe order Reading messages... (press Ctrl-C to quit) 1) "subscribe" 2) "order" 3) (integer) 1 1) "message" 2) "order" 3) "trade1"
- psubcribe 支持三种模式的订阅消息
- * 如果为ord*则表示所有ord开头的都能通过
- [] 如果为orde[er]则表示order和ordee能通过
- ? 如果为orde?则表示orde后面任意一个字符能通过
- 示例1:
订阅端
127.0.0.1:6379> psubscribe s* Reading messages... (press Ctrl-C to quit) 1) "psubscribe" 2) "s*" 3) (integer) 1
发布端
127.0.0.1:6379> publish shop shop1 (integer) 2 127.0.0.1:6379> publish order trade1 (integer) 0
订阅端
127.0.0.1:6379> psubscribe s* Reading messages... (press Ctrl-C to quit) 1) "psubscribe" 2) "s*" 3) (integer) 1 1) "pmessage" 2) "s*" 3) "shop" 4) "shop1"
13.3、SDK实现
首先,令我们的2个客户端监控trade通道
127.0.0.1:6379> subscribe trade Reading messages... (press Ctrl-C to quit) 1) "subscribe" 2) "trade" 3) (integer) 1
然后编写c#代码实现第三个客户端
- 非模式订阅
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); var subscriber = redis.GetSubscriber(); //订阅了channel=>trade //只要有 * 号 就认为是 模式的。 subscriber.Subscribe("trade", (channel, redisVaue) => { Console.WriteLine($"message={redisVaue}"); }); Console.ReadKey(); } }
- publish
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); var subscriber = redis.GetSubscriber(); for (int i = 0; i < 100; i++) { subscriber.Publish("trade", "t11111111111111"); } Console.ReadKey(); } }
- 模式订阅
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); var subscriber = redis.GetSubscriber(); var redisChannel = new RedisChannel("trad[ae]", RedisChannel.PatternMode.Pattern); //订阅了channel=>trade //只要有 * 号 就认为是 模式的。 subscriber.Subscribe(redisChannel, (channel, redisVaue) => { Console.WriteLine($"message={redisVaue}"); }); Console.ReadKey(); } }
13.4、源码解析
我们首先查看 Pubsub 组成,我们还是要先查看 src/server.c 中的对应定义
/* Pubsub */ dict *pubsub_channels; /* Map channels to list of subscribed clients */ list *pubsub_patterns; /* A list of pubsub_patterns */ int notify_keyspace_events; /* Events to propagate via Pub/Sub. This is an xor of NOTIFY_... flags. */
然后查看 publish 命令,我们还是要先查看 src/server.c 中的 publish 对应的 publishCommand 命令
void publishCommand(client *c) { int receivers = pubsubPublishMessage(c->argv[1],c->argv[2]);//推送消息 if (server.cluster_enabled) clusterPropagatePublish(c->argv[1],c->argv[2]); else forceCommandPropagation(c,PROPAGATE_REPL); addReplyLongLong(c,receivers); }
我们接下来查看 pubsubPublishMessage 方法
/* Publish a message */ int pubsubPublishMessage(robj *channel, robj *message) { int receivers = 0; dictEntry *de; listNode *ln; listIter li; /* Send to clients listening for that channel */ de = dictFind(server.pubsub_channels,channel);//获取到通道所有client if (de) { list *list = dictGetVal(de); listNode *ln; listIter li; listRewind(list,&li); while ((ln = listNext(&li)) != NULL) {//遍历所有client进行发送消息 client *c = ln->value; addReply(c,shared.mbulkhdr[3]); addReply(c,shared.messagebulk); addReplyBulk(c,channel); addReplyBulk(c,message); receivers++; } } /* Send to clients listening to matching channels */ if (listLength(server.pubsub_patterns)) {//获取到通道模式适配的所有client listRewind(server.pubsub_patterns,&li); channel = getDecodedObject(channel); while ((ln = listNext(&li)) != NULL) { pubsubPattern *pat = ln->value; if (stringmatchlen((char*)pat->pattern->ptr, sdslen(pat->pattern->ptr), (char*)channel->ptr, sdslen(channel->ptr),0)) { addReply(pat->client,shared.mbulkhdr[4]); addReply(pat->client,shared.pmessagebulk); addReplyBulk(pat->client,pat->pattern); addReplyBulk(pat->client,channel); addReplyBulk(pat->client,message); receivers++; } } decrRefCount(channel); } return receivers; }
然后我们再查看 subscribeCommand 方法
void subscribeCommand(client *c) { int j; for (j = 1; j < c->argc; j++) pubsubSubscribeChannel(c,c->argv[j]); c->flags |= CLIENT_PUBSUB; }
我们接下来查看 pubsubSubscribeChannel 方法
/* Subscribe a client to a channel. Returns 1 if the operation succeeded, or * 0 if the client was already subscribed to that channel. */ int pubsubSubscribeChannel(client *c, robj *channel) { dictEntry *de; list *clients = NULL; int retval = 0; /* Add the channel to the client -> channels hash table */ if (dictAdd(c->pubsub_channels,channel,NULL) == DICT_OK) {//将channel加入到字典中 retval = 1; incrRefCount(channel); /* Add the client to the channel -> list of clients hash table */ de = dictFind(server.pubsub_channels,channel); if (de == NULL) {//如果为null则生成一个list将客户端塞进去 clients = listCreate(); dictAdd(server.pubsub_channels,channel,clients); incrRefCount(channel); } else { clients = dictGetVal(de); } listAddNodeTail(clients,c);//将当前client追加到链表末尾 } /* Notify the client */ addReply(c,shared.mbulkhdr[3]); addReply(c,shared.subscribebulk); addReplyBulk(c,channel); addReplyLongLong(c,clientSubscriptionsCount(c)); return retval; }
14、【Tranaction】事务命令介绍和源码阅读
14.1、命令介绍
命令地址:https://redis.io/commands#transactions
常用命令:multi(开始),exec(执行),discard(丢弃) 命令的使用
命令示例:
127.0.0.1:6379> multi OK 127.0.0.1:6379> set username jack QUEUED 127.0.0.1:6379> set password 12345 QUEUED 127.0.0.1:6379> exec 1) OK 2) OK 127.0.0.1:6379> keys * 1) "password" 2) "username" 127.0.0.1:6379> flushall OK 127.0.0.1:6379> multi OK 127.0.0.1:6379> set username jack QUEUED 127.0.0.1:6379> set password 12345 QUEUED 127.0.0.1:6379> discard OK 127.0.0.1:6379> keys * (empty list or set)
14.2、事务的一些坑
示例:
127.0.0.1:6379> flushall OK 127.0.0.1:6379> multi OK 127.0.0.1:6379> set username mary QUEUED 127.0.0.1:6379> lpush username 1 2 3 QUEUED 127.0.0.1:6379> exec 1) OK 2) (error) WRONGTYPE Operation against a key holding the wrong kind of value
这时候我们发现命令有一个未执行成功,这样破坏了事务的原子性
14.3、watch 防止破坏事务的安全性
watch的目的是为了在执行事务的时候如果命令key的值呗修改,则不会执行成功
示例:
//客户端1 127.0.0.1:6379> watch username OK 127.0.0.1:6379> multi OK 127.0.0.1:6379> set username jack QUEUED //客户端2 127.0.0.1:6379> set username mary OK //客户端1 127.0.0.1:6379> exec (nil) 127.0.0.1:6379> get username "mary"
在client1的执行期间,修改了client1的事务中的某些数据类型的状态。。。
14.3、sdk使用
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); var transaction = db.CreateTransaction(); transaction.StringSetAsync("username", "jack"); transaction.StringSetAsync("password", "1234512345123451234512345123451234512345123451234512345123451234512345123451234512345123451234512345"); transaction.Execute(); Console.WriteLine("提交成功!"); Console.ReadKey(); } }
Wireshark抓取网络请求分析redis事务
14.4、源码解析
- client
查看 client 定义,该方法位于 src/server.h 中
/* With multiplexing we need to take per-client state. * Clients are taken in a linked list. */ typedef struct client { uint64_t id; /* Client incremental unique ID. */ int fd; /* Client socket. */ redisDb *db; /* Pointer to currently SELECTed DB. */ robj *name; /* As set by CLIENT SETNAME. */ sds querybuf; /* Buffer we use to accumulate client queries. */ size_t qb_pos; /* The position we have read in querybuf. */ sds pending_querybuf; /* If this client is flagged as master, this buffer represents the yet not applied portion of the replication stream that we are receiving from the master. */ size_t querybuf_peak; /* Recent (100ms or more) peak of querybuf size. */ int argc; /* Num of arguments of current command. */ robj **argv; /* Arguments of current command. */ struct redisCommand *cmd, *lastcmd; /* Last command executed. */ int reqtype; /* Request protocol type: PROTO_REQ_* */ int multibulklen; /* Number of multi bulk arguments left to read. */ long bulklen; /* Length of bulk argument in multi bulk request. */ list *reply; /* List of reply objects to send to the client. */ unsigned long long reply_bytes; /* Tot bytes of objects in reply list. */ size_t sentlen; /* Amount of bytes already sent in the current buffer or object being sent. */ time_t ctime; /* Client creation time. */ time_t lastinteraction; /* Time of the last interaction, used for timeout */ time_t obuf_soft_limit_reached_time; int flags; /* Client flags: CLIENT_* macros. */ int authenticated; /* When requirepass is non-NULL. */ int replstate; /* Replication state if this is a slave. */ int repl_put_online_on_ack; /* Install slave write handler on ACK. */ int repldbfd; /* Replication DB file descriptor. */ off_t repldboff; /* Replication DB file offset. */ off_t repldbsize; /* Replication DB file size. */ sds replpreamble; /* Replication DB preamble. */ long long read_reploff; /* Read replication offset if this is a master. */ long long reploff; /* Applied replication offset if this is a master. */ long long repl_ack_off; /* Replication ack offset, if this is a slave. */ long long repl_ack_time;/* Replication ack time, if this is a slave. */ long long psync_initial_offset; /* FULLRESYNC reply offset other slaves copying this slave output buffer should use. */ char replid[CONFIG_RUN_ID_SIZE+1]; /* Master replication ID (if master). */ int slave_listening_port; /* As configured with: SLAVECONF listening-port */ char slave_ip[NET_IP_STR_LEN]; /* Optionally given by REPLCONF ip-address */ int slave_capa; /* Slave capabilities: SLAVE_CAPA_* bitwise OR. */ multiState mstate; /* MULTI/EXEC state */ //保存所有的命令 int btype; /* Type of blocking op if CLIENT_BLOCKED. */ blockingState bpop; /* blocking state */ long long woff; /* Last write global replication offset. */ list *watched_keys; /* Keys WATCHED for MULTI/EXEC CAS */ dict *pubsub_channels; /* channels a client is interested in (SUBSCRIBE) */ list *pubsub_patterns; /* patterns a client is interested in (SUBSCRIBE) */ sds peerid; /* Cached peer ID. */ listNode *client_list_node; /* list node in client list */ /* Response buffer */ int bufpos; char buf[PROTO_REPLY_CHUNK_BYTES]; } client;
我们接下来查看 multiState 方法
typedef struct multiState { multiCmd *commands; /* Array of MULTI commands */ //存放命令的数组 int count; /* Total number of MULTI commands */ int cmd_flags; /* The accumulated command flags OR-ed together. So if at least a command has a given flag, it will be set in this field. */ int minreplicas; /* MINREPLICAS for synchronous replication */ time_t minreplicas_timeout; /* MINREPLICAS timeout as unixtime. */ } multiState;
我们接下来查看 multiCmd 方法
/* Client MULTI/EXEC state */ typedef struct multiCmd { robj **argv; //数组命令具体的值 int argc; //参数个数 struct redisCommand *cmd; //具体执行的哪个commond } multiCmd;
查看常见的 Client flags ,在 src/server.h 中
#define CLIENT_MULTI (1<<3) /* This client is in a MULTI context */ //当前的客户端是MULTI上下文
- multi
我们首先查看 multi 命令,我们还是要先查看 src/server.c 中的 multi 对应的 multiCommand 命令
void multiCommand(client *c) { if (c->flags & CLIENT_MULTI) { addReplyError(c,"MULTI calls can not be nested"); return; } c->flags |= CLIENT_MULTI;//把当前flag置为CLIENT_MULTI addReply(c,shared.ok); }
- exec
我们首先查看 exec 命令,我们还是要先查看 src/server.c 中的 exec 对应的 execCommand 命令
void execCommand(client *c) { int j; robj **orig_argv; int orig_argc; struct redisCommand *orig_cmd; int must_propagate = 0; /* Need to propagate MULTI/EXEC to AOF / slaves? */ int was_master = server.masterhost == NULL; if (!(c->flags & CLIENT_MULTI)) { addReplyError(c,"EXEC without MULTI"); return; } /* Check if we need to abort the EXEC because: * 1) Some WATCHed key was touched. * 2) There was a previous error while queueing commands. * A failed EXEC in the first case returns a multi bulk nil object * (technically it is not an error but a special behavior), while * in the second an EXECABORT error is returned. */ if (c->flags & (CLIENT_DIRTY_CAS|CLIENT_DIRTY_EXEC)) { addReply(c, c->flags & CLIENT_DIRTY_EXEC ? shared.execaborterr : shared.nullmultibulk); discardTransaction(c); goto handle_monitor; } /* If there are write commands inside the transaction, and this is a read * only slave, we want to send an error. This happens when the transaction * was initiated when the instance was a master or a writable replica and * then the configuration changed (for example instance was turned into * a replica). */ if (!server.loading && server.masterhost && server.repl_slave_ro && !(c->flags & CLIENT_MASTER) && c->mstate.cmd_flags & CMD_WRITE)//判断是不是CAS状态,如果是的话,则取消 { addReplyError(c, "Transaction contains write commands but instance " "is now a read-only slave. EXEC aborted."); discardTransaction(c); goto handle_monitor; } /* Exec all the queued commands */ unwatchAllKeys(c); /* Unwatch ASAP otherwise we'll waste CPU cycles */ //接触所有watch命令控制住的key orig_argv = c->argv; orig_argc = c->argc; orig_cmd = c->cmd; addReplyMultiBulkLen(c,c->mstate.count); for (j = 0; j < c->mstate.count; j++) { c->argc = c->mstate.commands[j].argc; c->argv = c->mstate.commands[j].argv; c->cmd = c->mstate.commands[j].cmd; /* Propagate a MULTI request once we encounter the first command which * is not readonly nor an administrative one. * This way we'll deliver the MULTI/..../EXEC block as a whole and * both the AOF and the replication link will have the same consistency * and atomicity guarantees. */ if (!must_propagate && !(c->cmd->flags & (CMD_READONLY|CMD_ADMIN))) { execCommandPropagateMulti(c); //以冒泡的形式执行 must_propagate = 1; } call(c,server.loading ? CMD_CALL_NONE : CMD_CALL_FULL); /* Commands may alter argc/argv, restore mstate. */ //读取所有的命令 c->mstate.commands[j].argc = c->argc; c->mstate.commands[j].argv = c->argv; c->mstate.commands[j].cmd = c->cmd; } c->argv = orig_argv; c->argc = orig_argc; c->cmd = orig_cmd; discardTransaction(c); /* Make sure the EXEC command will be propagated as well if MULTI * was already propagated. */ if (must_propagate) { int is_master = server.masterhost == NULL; server.dirty++; /* If inside the MULTI/EXEC block this instance was suddenly * switched from master to slave (using the SLAVEOF command), the * initial MULTI was propagated into the replication backlog, but the * rest was not. We need to make sure to at least terminate the * backlog with the final EXEC. */ if (server.repl_backlog && was_master && !is_master) { char *execcmd = "*1\r\n$4\r\nEXEC\r\n"; feedReplicationBacklog(execcmd,strlen(execcmd)); } } handle_monitor: /* Send EXEC to clients waiting data from MONITOR. We do it here * since the natural order of commands execution is actually: * MUTLI, EXEC, ... commands inside transaction ... * Instead EXEC is flagged as CMD_SKIP_MONITOR in the command * table, and we do it here with correct ordering. */ if (listLength(server.monitors) && !server.loading) replicationFeedMonitors(c,server.monitors,c->db->id,c->argv,c->argc); }
- watch
查看 redisDb 方法,该方法位于 src/server.h 中
/* Redis database representation. There are multiple databases identified * by integers from 0 (the default database) up to the max configured * database. The database number is the 'id' field in the structure. */ typedef struct redisDb { dict *dict; /* The keyspace for this DB */ dict *expires; /* Timeout of keys with a timeout set */ dict *blocking_keys; /* Keys with clients waiting for data (BLPOP)*/ dict *ready_keys; /* Blocked keys that received a PUSH */ dict *watched_keys; /* WATCHED keys for MULTI/EXEC CAS */ //watch数组来存放MULTI/EXEC的watch key使之变成CAS状态 int id; /* Database ID */ long long avg_ttl; /* Average TTL, just for stats */ list *defrag_later; /* List of key names to attempt to defrag one by one, gradually. */ } redisDb;
这个地方的处理逻辑在于 t_string.c 中的 setCommand 方法中的 setGenericCommand 方法中的 setKey 方法, setKey 方法位于 db.c 中
/* High level Set operation. This function can be used in order to set * a key, whatever it was existing or not, to a new object. * * 1) The ref count of the value object is incremented. * 2) clients WATCHing for the destination key notified. * 3) The expire time of the key is reset (the key is made persistent). * * All the new keys in the database should be created via this interface. */ void setKey(redisDb *db, robj *key, robj *val) { if (lookupKeyWrite(db,key) == NULL) { dbAdd(db,key,val); } else { dbOverwrite(db,key,val); } incrRefCount(val); removeExpire(db,key); signalModifiedKey(db,key); //通知修改key }
我们接下来查看 signalModifiedKey 方法
/*----------------------------------------------------------------------------- * Hooks for key space changes. * * Every time a key in the database is modified the function * signalModifiedKey() is called. * * Every time a DB is flushed the function signalFlushDb() is called. *----------------------------------------------------------------------------*/ void signalModifiedKey(redisDb *db, robj *key) { //钩子函数,所有key的修改都能监控到 touchWatchedKey(db,key); }
我们接下来查看 touchWatchedKey 方法,位于 multi.c 文件中
/* "Touch" a key, so that if this key is being WATCHed by some client the * next EXEC will fail. */ void touchWatchedKey(redisDb *db, robj *key) { list *clients; listIter li; listNode *ln; if (dictSize(db->watched_keys) == 0) return; clients = dictFetchValue(db->watched_keys, key); //拿出watched_keys中的所有客户端,类似结构["username":{client1, client2,client3}] if (!clients) return; /* Mark all the clients watching this key as CLIENT_DIRTY_CAS */ /* Check if we are already watching for this key */ listRewind(clients,&li); while((ln = listNext(&li))) { client *c = listNodeValue(ln); c->flags |= CLIENT_DIRTY_CAS; //把所有的状态全部设置成CAS状态,后面执行exec的时候回进行该状态判断 } }
15、【Scan】亿级key的删除困惑之理解利器scan
15.1、Keys 硬遍历的困惑
keys命令介绍:https://redis.io/commands#generic
背景介绍:最近有一个redis大概有1亿个key,但是随着有些店铺的过期,我需要把keys找到删除(一年一个周期),以减少redis内存的膨胀。如果直接使用使用直接 keys * 命令,则会造成redis卡死。
数据存储格式:key: s1c1 => shopid=1 customerid= 1。 value: 总交易金额,总交易次数。所以获取到的key为key:s1c2, s1c3, s2c1, s2c2
困惑原因:由于redis是单线程的,遍历37w数据大约需要4s的时间,如果是上亿级的数据会很耗时,所以数据量比较大的时候不建议使用keys
模拟数据插入:
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); var rand = new Random(); for (int i = 1; i < int.MaxValue; i++) { var customerID = rand.Next(1, 10000); var key = $"s{i}c{customerID}"; var value = ""; //统计信息 db.StringSet(key, value); } Console.WriteLine("提交成功!"); Console.ReadKey(); } }
15.2、Scan 软遍历
采用cursor游标的模式,增量返回。不是像keys一样所有都返回。而是采用游标的形式从0开始,从0结束。。
语法结构:count: 返回的条数 【maxcount】,先读取后匹配
SCAN cursor [MATCH pattern] [COUNT count]
- SCAN:遍历string
- HSCAN:遍历hash
- ZSCAN:遍历SortSet
- SSCAN:遍历Set
示例:
127.0.0.1:6379> scan 0 match s* count 10 //先从游标0开始按模式匹配10个 1) "6553600" //获取到当前游标6553600 2) 1) "s6320142c103" 2) "s719732c3086" 3) "s4214422c4224" 4) "s6107971c7924" 5) "s571181c6966" 6) "s750494c9526" 7) "s527442c5164" 8) "s6580725c8456" 9) "s4791604c5206" 10) "s1556977c9206" (1.95s) 127.0.0.1:6379> scan 6553600 match s* count 10 //从游标6553600继续按模式匹配10个 1) "6422528" //获取到当前游标6422528 2) 1) "s4304862c8240" 2) "s3414324c2227" 3) "s4356115c2908" 4) "s236939c720" 5) "s3866928c1421" 6) "s4228406c6939" 7) "s5128352c6328" 8) "s3357175c9411" 9) "s2312242c5901" 10) "s5774711c106" 127.0.0.1:6379> scan 6422528 match s* count 10 //从游标6422528继续按模式匹配10个 1) "7995392" //获取到当前游标7995392 2) 1) "s1823975c1611" 2) "s244495c2589" 3) "s1786203c9731" 4) "s6120152c2581" 5) "s3939227c1146" 6) "s2551230c1949" 7) "s2603224c341" 8) "s5598259c625" 9) "s5823184c9255" 10) "s3871444c9972" (0.52s)
15.3、SDK实现
SDK中将keys 和 scan 合二为一了。。
- 如果你的sdk 版本比较低,或者不支持scan,那就是用keys
- 如果你的key的个数比较少,可能就会是用到keys。。。
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); var server = redis.GetServer("192.168.181.131:6379"); var list = server.Keys(0, "s*", 10); // 底层帮你每次从server获取10条,上层不用关心这个。。。 // 自动帮你执行了 list = server.Keys(cursor, "s*", 10); var index = 1; foreach (var item in list) { Console.WriteLine(item); Console.WriteLine(index++); } Console.ReadKey(); } }
wireshark抓包
15.4、 源码简要研究
我们首先查看 SCAN 命令,我们还是要先查看 src/server.c 中的 scan 对应的 scanCommand 命令
/* The SCAN command completely relies on scanGenericCommand. */ void scanCommand(client *c) { unsigned long cursor; if (parseScanCursorOrReply(c,c->argv[1],&cursor) == C_ERR) return; scanGenericCommand(c,NULL,cursor); }
我们接下来查看 scanGenericCommand 方法
/* This command implements SCAN, HSCAN and SSCAN commands. * If object 'o' is passed, then it must be a Hash or Set object, otherwise * if 'o' is NULL the command will operate on the dictionary associated with * the current database. * * When 'o' is not NULL the function assumes that the first argument in * the client arguments vector is a key so it skips it before iterating * in order to parse options. * * In the case of a Hash object the function returns both the field and value * of every element on the Hash. */ void scanGenericCommand(client *c, robj *o, unsigned long cursor) { int i, j; list *keys = listCreate(); listNode *node, *nextnode; long count = 10; sds pat = NULL; int patlen = 0, use_pattern = 0; dict *ht; /* Object must be NULL (to iterate keys names), or the type of the object * must be Set, Sorted Set, or Hash. */ serverAssert(o == NULL || o->type == OBJ_SET || o->type == OBJ_HASH || o->type == OBJ_ZSET); /* Set i to the first option argument. The previous one is the cursor. */ i = (o == NULL) ? 2 : 3; /* Skip the key argument if needed. */ /* Step 1: Parse options. */ //第一步,转换options,验证count、match、*不能错 while (i < c->argc) { j = c->argc - i; if (!strcasecmp(c->argv[i]->ptr, "count") && j >= 2) { if (getLongFromObjectOrReply(c, c->argv[i+1], &count, NULL) != C_OK) { goto cleanup; } if (count < 1) { addReply(c,shared.syntaxerr); goto cleanup; } i += 2; } else if (!strcasecmp(c->argv[i]->ptr, "match") && j >= 2) { pat = c->argv[i+1]->ptr; patlen = sdslen(pat); /* The pattern always matches if it is exactly "*", so it is * equivalent to disabling it. */ use_pattern = !(pat[0] == '*' && patlen == 1); i += 2; } else { addReply(c,shared.syntaxerr); goto cleanup; } } /* Step 2: Iterate the collection. * * Note that if the object is encoded with a ziplist, intset, or any other * representation that is not a hash table, we are sure that it is also * composed of a small number of elements. So to avoid taking state we * just return everything inside the object in a single call, setting the * cursor to zero to signal the end of the iteration. */ /* Handle the case of a hash table. */ //第二步,迭代集合 ht = NULL; if (o == NULL) { ht = c->db->dict; } else if (o->type == OBJ_SET && o->encoding == OBJ_ENCODING_HT) { ht = o->ptr; } else if (o->type == OBJ_HASH && o->encoding == OBJ_ENCODING_HT) { ht = o->ptr; count *= 2; /* We return key / value for this type. */ } else if (o->type == OBJ_ZSET && o->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = o->ptr; ht = zs->dict; count *= 2; /* We return key / value for this type. */ } if (ht) { void *privdata[2]; /* We set the max number of iterations to ten times the specified * COUNT, so if the hash table is in a pathological state (very * sparsely populated) we avoid to block too much time at the cost * of returning no or very few elements. */ long maxiterations = count*10; /* We pass two pointers to the callback: the list to which it will * add new elements, and the object containing the dictionary so that * it is possible to fetch more data in a type-dependent way. */ privdata[0] = keys; privdata[1] = o; do { cursor = dictScan(ht, cursor, scanCallback, NULL, privdata); } while (cursor && maxiterations-- && listLength(keys) < (unsigned long)count); } else if (o->type == OBJ_SET) { int pos = 0; int64_t ll; while(intsetGet(o->ptr,pos++,&ll)) listAddNodeTail(keys,createStringObjectFromLongLong(ll)); cursor = 0; } else if (o->type == OBJ_HASH || o->type == OBJ_ZSET) { unsigned char *p = ziplistIndex(o->ptr,0); unsigned char *vstr; unsigned int vlen; long long vll; while(p) { ziplistGet(p,&vstr,&vlen,&vll); listAddNodeTail(keys, (vstr != NULL) ? createStringObject((char*)vstr,vlen) : createStringObjectFromLongLong(vll)); p = ziplistNext(o->ptr,p); } cursor = 0; } else { serverPanic("Not handled encoding in SCAN."); } /* Step 3: Filter elements. */ //第三步,过滤元素 node = listFirst(keys); while (node) { robj *kobj = listNodeValue(node); nextnode = listNextNode(node); int filter = 0; /* Filter element if it does not match the pattern. */ //使用模式去匹配 if (!filter && use_pattern) { if (sdsEncodedObject(kobj)) { if (!stringmatchlen(pat, patlen, kobj->ptr, sdslen(kobj->ptr), 0)) filter = 1; } else { char buf[LONG_STR_SIZE]; int len; serverAssert(kobj->encoding == OBJ_ENCODING_INT); len = ll2string(buf,sizeof(buf),(long)kobj->ptr); if (!stringmatchlen(pat, patlen, buf, len, 0)) filter = 1; } } /* Filter element if it is an expired key. */ //判断key有没有过期,过期也进行删除 if (!filter && o == NULL && expireIfNeeded(c->db, kobj)) filter = 1; /* Remove the element and its associted value if needed. */ //删除元素关联的值 if (filter) { decrRefCount(kobj); listDelNode(keys, node); } /* If this is a hash or a sorted set, we have a flat list of * key-value elements, so if this element was filtered, remove the * value, or skip it if it was not filtered: we only match keys. */ if (o && (o->type == OBJ_ZSET || o->type == OBJ_HASH)) { node = nextnode; nextnode = listNextNode(node); if (filter) { kobj = listNodeValue(node); decrRefCount(kobj); listDelNode(keys, node); } } node = nextnode; } /* Step 4: Reply to the client. */ //第四部,响应客户端 addReplyMultiBulkLen(c, 2); addReplyBulkLongLong(c,cursor); addReplyMultiBulkLen(c, listLength(keys)); while ((node = listFirst(keys)) != NULL) { robj *kobj = listNodeValue(node); addReplyBulk(c, kobj); decrRefCount(kobj); listDelNode(keys, node); } cleanup: listSetFreeMethod(keys,decrRefCountVoid); listRelease(keys); }
我们重点查看一下第二步的 dictScan ,在 dict.c 文件中
/* dictScan() is used to iterate over the elements of a dictionary. * dictscan()用于迭代字典的元素。 * * Iterating works the following way: * 迭代的工作方式如下: * * 1) Initially you call the function using a cursor (v) value of 0. * 1)最初使用光标(v)值0调用函数。 * 2) The function performs one step of the iteration, and returns the * new cursor value you must use in the next call. * 2)函数执行迭代的一个步骤,并返回下一次调用中必须使用的新光标值。 * 3) When the returned cursor is 0, the iteration is complete. * 3)当返回的光标为0时,迭代完成。 * * The function guarantees all elements present in the * dictionary get returned between the start and end of the iteration. * However it is possible some elements get returned multiple times. * 函数确保在迭代的开始和结束之间返回字典中的所有元素。但是,某些元素可能会多次返回。 * * For every element returned, the callback argument 'fn' is * called with 'privdata' as first argument and the dictionary entry * 'de' as second argument. * 对于返回的每个元素,调用回调参数“fn”,第一个参数为“privdata”,第二个参数为字典条目“de”。 * * HOW IT WORKS. * 它是如何工作的。 * * The iteration algorithm was designed by Pieter Noordhuis. * The main idea is to increment a cursor starting from the higher order * bits. That is, instead of incrementing the cursor normally, the bits * of the cursor are reversed, then the cursor is incremented, and finally * the bits are reversed again. * 迭代算法由Pieter Noordhuis设计。主要思想是从高阶位开始增加光标。也就是说,不是通常递增光标,而是反转光标的位,然后递增光标,最后再次反转位。 * * This strategy is needed because the hash table may be resized between * iteration calls. * 需要使用此策略,因为哈希表可能在迭代调用之间调整大小。 * * dict.c hash tables are always power of two in size, and they * use chaining, so the position of an element in a given table is given * by computing the bitwise AND between Hash(key) and SIZE-1 * (where SIZE-1 is always the mask that is equivalent to taking the rest * of the division between the Hash of the key and SIZE). * dict.c散列表的大小总是2的幂,它们使用链接,因此通过计算散列(键)和大小-1之间的位和(其中,大小-1始终是等同于在键的散列和大小之间进行其余除法的掩码)来给出给定表中元素的位置。 * * For example if the current hash table size is 16, the mask is * (in binary) 1111. The position of a key in the hash table will always be * the last four bits of the hash output, and so forth. * 例如,如果当前哈希表大小为16,则掩码为(二进制)1111。键在哈希表中的位置始终是哈希输出的最后四位,以此类推。 * * WHAT HAPPENS IF THE TABLE CHANGES IN SIZE? * 如果表的大小发生了变化,会发生什么? * * If the hash table grows, elements can go anywhere in one multiple of * the old bucket: for example let's say we already iterated with * a 4 bit cursor 1100 (the mask is 1111 because hash table size = 16). * 如果散列表增长,元素可以在旧bucket的一个倍数中移动到任何地方:例如,假设我们已经使用4位光标1100进行了迭代(掩码为1111,因为散列表大小=16)。 * * If the hash table will be resized to 64 elements, then the new mask will * be 111111. The new buckets you obtain by substituting in ??1100 * with either 0 or 1 can be targeted only by keys we already visited * when scanning the bucket 1100 in the smaller hash table. * 如果哈希表将被调整为64个元素,那么新的掩码将是111111。你用替换的方法得到的新桶??只有在扫描较小哈希表中的bucket 1100时,我们已经访问过的键才能针对0或1的1100。 * * By iterating the higher bits first, because of the inverted counter, the * cursor does not need to restart if the table size gets bigger. It will * continue iterating using cursors without '1100' at the end, and also * without any other combination of the final 4 bits already explored. * 通过首先迭代更高的位,由于计数器是反向的,如果表的大小变大,光标就不需要重新启动。它将继续使用光标进行迭代,结尾不带“1100”,也不包含已探索的最后4位的任何其他组合。 * * Similarly when the table size shrinks over time, for example going from * 16 to 8, if a combination of the lower three bits (the mask for size 8 * is 111) were already completely explored, it would not be visited again * because we are sure we tried, for example, both 0111 and 1111 (all the * variations of the higher bit) so we don't need to test it again. * 同样地,当表大小随着时间而缩小时,例如从16到8,如果已经完全探索了较低的三位(8大小的掩码是111)的组合,则不会再次访问它,因为我们确定已尝试过,例如,0111和1111(较高位的所有变化),因此我们不需要再次测试它。 * * WAIT... YOU HAVE *TWO* TABLES DURING REHASHING! * * * Yes, this is true, but we always iterate the smaller table first, then * we test all the expansions of the current cursor into the larger * table. For example if the current cursor is 101 and we also have a * larger table of size 16, we also test (0)101 and (1)101 inside the larger * table. This reduces the problem back to having only one table, where * the larger one, if it exists, is just an expansion of the smaller one. * 是的,这是正确的,但我们总是先迭代较小的表,然后将当前光标的所有扩展测试到较大的表中。例如,如果当前光标是101,并且我们还有一个更大的表,大小为16,那么我们还将在更大的表中测试(0)101和(1)101。这将问题减少到只有一个表,其中较大的表(如果存在)只是较小表的扩展。 * * LIMITATIONS * 局限性 * * This iterator is completely stateless, and this is a huge advantage, * including no additional memory used. * 这个迭代器是完全无状态的,这是一个巨大的优势,包括没有使用额外的内存。 * * The disadvantages resulting from this design are: * 这种设计的缺点是: * * 1) It is possible we return elements more than once. However this is usually * easy to deal with in the application level. * 2) The iterator must return multiple elements per call, as it needs to always * return all the keys chained in a given bucket, and all the expansions, so * we are sure we don't miss keys moving during rehashing. * 3) The reverse cursor is somewhat hard to understand at first, but this * comment is supposed to help. * 1)我们可能会多次返回元素。然而,这通常在应用程序级别很容易处理。 * 2)迭代器每次调用必须返回多个元素,因为它需要始终返回一个给定bucket中链接的所有键以及所有扩展,因此我们确信在重新刷新期间不会错过键的移动。 * 3)反向光标一开始有点难理解,但是这个注释应该有帮助。 */ unsigned long dictScan(dict *d, unsigned long v, dictScanFunction *fn, dictScanBucketFunction* bucketfn, void *privdata) { dictht *t0, *t1; const dictEntry *de, *next; unsigned long m0, m1; if (dictSize(d) == 0) return 0; if (!dictIsRehashing(d)) { t0 = &(d->ht[0]); m0 = t0->sizemask; /* Emit entries at cursor */ if (bucketfn) bucketfn(privdata, &t0->table[v & m0]); de = t0->table[v & m0]; while (de) { next = de->next; fn(privdata, de); de = next; } /* Set unmasked bits so incrementing the reversed cursor * operates on the masked bits */ v |= ~m0; /* Increment the reverse cursor */ v = rev(v); v++; v = rev(v); } else { t0 = &d->ht[0]; t1 = &d->ht[1]; /* Make sure t0 is the smaller and t1 is the bigger table */ if (t0->size > t1->size) { t0 = &d->ht[1]; t1 = &d->ht[0]; } m0 = t0->sizemask; m1 = t1->sizemask; /* Emit entries at cursor */ if (bucketfn) bucketfn(privdata, &t0->table[v & m0]); de = t0->table[v & m0]; while (de) { next = de->next; fn(privdata, de); de = next; } /* Iterate over indices in larger table that are the expansion * of the index pointed to by the cursor in the smaller table */ do { /* Emit entries at cursor */ if (bucketfn) bucketfn(privdata, &t1->table[v & m1]); de = t1->table[v & m1]; while (de) { next = de->next; fn(privdata, de); de = next; } /* Increment the reverse cursor not covered by the smaller mask.*/ v |= ~m1; v = rev(v); v++; v = rev(v); /* Continue while bits covered by mask difference is non-zero */ } while (v & (m0 ^ m1)); } return v; }
16、【Lua】脚本的几个案例介绍及对scan的优化
16.1、Lua简介
Lua 脚本功能是 Reids 2.6 版本的最大亮点, 通过内嵌对 Lua 环境的支持, Redis 解决了长久以来不能高效地处理 CAS (check-and-set)命令的缺点, 并且可以通过组合使用多个命令, 轻松实现以前很难实现或者不能高效实现的模式。(其实他就相当于关系数据库的 存储过程)
假设我们存储了userinfo age1 20 age2 25 age3 28,如果我们要找到hash中小于指定age的所有kv。我们只能使用 gethashall 命令取出全部数据或者 getkeys 取出所有key,然后再逐一进行查询,Lua脚本就是来解决这一问题的
16.2、常用命令介绍
命令地址:https://redis.io/commands#scripting
常用命令:EVAL,EVALSHA, SCRIPT LOAD, SCRIPT FLUSH
- EVAL
语法:EVAL script numkeys key [key ...] arg [arg ...]
示例:
//KEYS表示键,ARGV表示值 127.0.0.1:6379> EVAL "return KEYS[1]+KEYS[2]" 2 1 5 (integer) 6 (0.57s) 127.0.0.1:6379> EVAL "return KEYS[1]+ARGV[1]+ARGV[2]" 1 1 10 20 (integer) 31
我们还可以将其写成lua脚本,使用 file.lua 形式灌入
//创建test.lua文件 vim test.lua //文件中写入 return KEYS[1]+ARGV[1]+ARGV[2]; //然后执行(注意使用lua脚本时,key和value用,号进行分隔,中间还应有空格) [root@localhost redis]# ./redis-cli --eval ./test.lua 1 , 10 20 (integer) 31
- SCRIPT LOAD + EVALSHA
把脚本在redis server 中进行缓存,这样不用每次使用的时候再去进行编译了
127.0.0.1:6379> SCRIPT LOAD "return KEYS[1]+KEYS[2]" "7b23d2a5829679ac50baf7c8e105904a3e9e69bb" 127.0.0.1:6379> EVALSHA 7b23d2a5829679ac50baf7c8e105904a3e9e69bb 2 1 5 (integer) 6
16.3、LUA脚本
情景描述:首先我们优化之前的SCAN查找,我们先进性筛选查找,然后将数据存放到List<string>集合中,然后进行遍历删除,这样就涉及到客户端与服务端的频繁数据往返。
那么我们可以通过Lua脚本的方式解决这个问题。
16.3.1、按模式删除数据
初始化测试数据:
127.0.0.1:6379> flushall OK 127.0.0.1:6379> set s1c1 1 OK 127.0.0.1:6379> set s1c2 2 OK 127.0.0.1:6379> set s1c3 3 OK 127.0.0.1:6379> set s1c4 4 OK 127.0.0.1:6379> set s1c5 5 OK 127.0.0.1:6379> set s1c6 6 OK 127.0.0.1:6379> set s1c7 7 OK 127.0.0.1:6379> set s1c8 8 OK 127.0.0.1:6379> set s1c9 9 OK 127.0.0.1:6379> set s1c10 10 OK 127.0.0.1:6379> set s2c1 1 OK
测试查询数据:
127.0.0.1:6379> scan 0 match s1c* count 5 1) "10" 2) 1) "s1c8" 2) "s1c10" 3) "s1c3" 4) "s1c2" 5) "s1c1"
test.lua脚本内容:
local pattern=KEYS[1]; local result={}; local cursor=0; while (true) do -- 匹配slc* -- redis.call :相当于在server端调用redis的相应命令。 -- redis.call返回table结构 => dict 相当于c#中的dictionary字典 local dict=redis.call("scan",cursor,"match",pattern); -- 1.获取cursor cursor=dict[1]; -- 1.获取返回的keys的table local keyslist=dict[2]; -- 2.获取要删除的keys for idx,value in pairs(keyslist) do local isSuccess=redis.call("del",value); if(isSuccess==1)then table.insert(result.isSuccess);-- 插入到result中 end end print(cursor); if(cursor=="0")then break; end end return result;
我们可以在本地写好脚本,然后再在 linux 系统中使用 rz/sz 命令进行接收和发送文件(注意:rz命令从客户端进行发送时,去确保接收路径没有重复文件,不然会传输失败或者使用rz -y强制覆盖)
sz:将选定的文件发送(send)到本地机器
rz:运行该命令会弹出一个文件选择窗口,从本地选择文件上传到Linux服务器
安装命令:
yum install lrzsz
从服务端发送文件到客户端:
sz filename
从客户端上传文件到服务端:
rz
在弹出的框中选择文件,上传文件的用户和组是当前登录的用户
Xshell设置默认路径:
右键会话 -> 属性 -> ZMODEM -> 接收文件夹
然后执行命令删除"s1c"开头的所有数据,删除成功后只会剩一条数据
[root@localhost redis]# ./redis-cli --eval ./test.lua "s1c*" 1) (integer) 1 2) (integer) 1 3) (integer) 1 4) (integer) 1 5) (integer) 1 6) (integer) 1 7) (integer) 1 8) (integer) 1 9) (integer) 1 10) (integer) 1 127.0.0.1:6379> keys * 1) "s2c1"
16.3.2、找到hash中小于指定age的所有kv
目标:删除age大于25的kv
初始化数据:
127.0.0.1:6379> flushall OK 127.0.0.1:6379> hset userinfo age1 20 (integer) 1 127.0.0.1:6379> hset userinfo age2 25 (integer) 1 127.0.0.1:6379> hset userinfo age3 28 (integer) 1 127.0.0.1:6379> hset userinfo age4 30 (integer) 1
测试查询数据:
127.0.0.1:6379> hkeys userinfo 1) "age1" 2) "age2" 3) "age3" 4) "age4"
hash.lua脚本内容:
local userinfo=KEYS[1]; --db 的 key local age=KEYS[2]; local hkeys=redis.call("hkeys",userinfo); for k,v in pairs(hkeys) do local hval= redis.call("hget",userinfo,v); -- 如果hval 大于指定的 age,直接删除 if(tonumber(hval) > tonumber(age)) then redis.call("hdel",userinfo,v); print (v .. " del ok"); end end return 1;
然后执行命令删除userinfo中age大于25的所有数据,删除成功后只会剩2条数据
[root@localhost redis]# ./redis-cli --eval ./hash.lua userinfo 25 (integer) 1 [root@localhost redis]# ./redis-cli 127.0.0.1:6379> hkeys userinfo 1) "age1" 2) "age2"
16.4、SDK实现
sdk中的实现逻辑是读取本地lua文件中的脚本信息,然后提交到redis-server中去执行
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); var script = File.ReadAllText(@"hash.lua", Encoding.Default); var result = db.ScriptEvaluate(script, new RedisKey[2] { "userinfo", "25" }); Console.WriteLine("执行成功"); Console.ReadKey(); } }
17、【性能优化】介绍使用四种方式实现大批量数据急速插入
17.1、场景介绍
如何短时间内向redis灌入大量数据,源于千人千面场景,存储s*c*(针对shop和customer统计信息进行存储)。
- 普通模式 的龟速插入
10w条: 50s左右
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); Stopwatch sw=new Stopwatch(); sw.Start(); for (int i = 0; i < 100000; i++) { db.StringSet(i.ToString(), i.ToString()); } sw.Stop(); Console.WriteLine(sw.ElapsedMilliseconds); Console.WriteLine("执行成功"); Console.ReadKey(); } }
- 原因分析及优化 (Round-Trip)
优化思路:减少round-trip,10万次请求就是10万次round-trip
17.2、SDK演示速度大比拼
batch.lua 脚本
-- KEYS[1] 转化为json数组 local str=KEYS[1]; local arr=cjson.decode(str); local result={}; for idx,v in pairs(arr) do local isSuccess= redis.call("set",v.k,v.v); table.insert(result,isSuccess); end return result;
c# SDK 代码
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.181.131:6379"); IDatabase db = redis.GetDatabase(0); var dict=new Dictionary<int, List<KeyValuePair<RedisKey, RedisValue>>>(); // 100个shop for (int i = 0; i <= 10; i++) { //1w 个 key var smallList = Enumerable.Range(0, 10000).Select(m => KeyValuePair.Create<RedisKey, RedisValue>(Guid.NewGuid().ToString(), Guid.NewGuid().ToString())).ToList(); dict.Add(i,smallList); } var stopwatch = Stopwatch.StartNew(); //1. transaction (1w条插入一次) foreach (var item in dict) { var transaction = db.CreateTransaction(); foreach (var model in item.Value) { transaction.StringSetAsync(model.Key, model.Value); } transaction.Execute(); Console.WriteLine($"transaction {item.Key} 批次执行完毕"); } Console.WriteLine($"transaction 耗费的时间:{stopwatch.ElapsedMilliseconds}"); stopwatch.Restart(); //2. mset (1w条插入一次) foreach (var item in dict) { db.StringSet(item.Value.ToArray()); Console.WriteLine($"mset {item.Key} 批次执行完毕"); } Console.WriteLine($"mset耗费的时间:{stopwatch.ElapsedMilliseconds}"); stopwatch.Restart(); //3. pipeline (1w条插入一次) foreach (var item in dict) { var batch = db.CreateBatch(); foreach (var model in item.Value) { batch.StringSetAsync(model.Key, model.Value); } batch.Execute(); Console.WriteLine($"batch {item.Key} 批次执行完毕"); } Console.WriteLine($"batch 耗费的时间:{stopwatch.ElapsedMilliseconds}"); stopwatch.Restart(); //4. lua脚本 (1w条插入一次) foreach (var item in dict) { var list = item.Value.Select(i => new model() { k = i.Key, v = i.Value }); db.ScriptEvaluate(File.ReadAllText(@"batch.lua", Encoding.Default), new RedisKey[] { JsonConvert.SerializeObject(list) }); Console.WriteLine($"lua {item.Key} 批次执行完毕"); } Console.WriteLine($"lua 耗费的时间:{stopwatch.ElapsedMilliseconds}"); stopwatch.Restart(); //5. normal (一条一次) foreach (var item in dict) { foreach (var model in item.Value) { db.StringSet(model.Key, model.Value); } Console.WriteLine($"normal {item.Key} 批次执行完毕"); } Console.WriteLine($"normal 耗费的时间:{stopwatch.ElapsedMilliseconds}"); Console.ReadKey(); } } public class model { public string k { get; set; } public string v { get; set; } }
时间统计
... transaction 耗费的时间:1060 ... mset耗费的时间:511 ... batch 耗费的时间:819 ... lua 耗费的时间:1504 ... normal 耗费的时间:61657
18、【限制内存】限制redis的最大内存介绍及代码测试
有些人可能真的会把Redis当做缓存来使用。因为缓存使用无止境,所有通常会配一个 maxmemory 限制redis最大内存。
18.1、设置最大内存(maxmemory)、内存超出使用策略(maxmemory-policy)
修改redis.conf默认参数(maxmemory、maxmemory-policy)
############################## MEMORY MANAGEMENT ################################ # Set a memory usage limit to the specified amount of bytes. # When the memory limit is reached Redis will try to remove keys # according to the eviction policy selected (see maxmemory-policy). # # If Redis can't remove keys according to the policy, or if the policy is # set to 'noeviction', Redis will start to reply with errors to commands # that would use more memory, like SET, LPUSH, and so on, and will continue # to reply to read-only commands like GET. # # This option is usually useful when using Redis as an LRU or LFU cache, or to # set a hard memory limit for an instance (using the 'noeviction' policy). # # WARNING: If you have replicas attached to an instance with maxmemory on, # the size of the output buffers needed to feed the replicas are subtracted # from the used memory count, so that network problems / resyncs will # not trigger a loop where keys are evicted, and in turn the output # buffer of replicas is full with DELs of keys evicted triggering the deletion # of more keys, and so forth until the database is completely emptied. # # In short... if you have replicas attached it is suggested that you set a lower # limit for maxmemory so that there is some free RAM on the system for replica # output buffers (but this is not needed if the policy is 'noeviction'). # # maxmemory <bytes> maxmemory 104857600 //100M=1024*1024*100 最大内存设置100M # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory # is reached. You can select among five behaviors: # # volatile-lru -> Evict using approximated LRU among the keys with an expire set. # allkeys-lru -> Evict any key using approximated LRU. # volatile-lfu -> Evict using approximated LFU among the keys with an expire set. # allkeys-lfu -> Evict any key using approximated LFU. # volatile-random -> Remove a random key among the ones with an expire set. # allkeys-random -> Remove a random key, any key. # volatile-ttl -> Remove the key with the nearest expire time (minor TTL) # noeviction -> Don't evict anything, just return an error on write operations. # # LRU means Least Recently Used # LFU means Least Frequently Used # # Both LRU, LFU and volatile-ttl are implemented using approximated # randomized algorithms. # # Note: with any of the above policies, Redis will return an error on write # operations, when there are no suitable keys for eviction. # # At the date of writing these commands are: set setnx setex append # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby # getset mset msetnx exec sort # # The default is: # # maxmemory-policy noeviction maxmemory-policy allkeys-lru //maxmemory-policy 配置内存不足时使用的策略。
内存不足时使用的策略使用说明
- LRU(Least Recently Used最少最近使用 ):
- LFU(Least Frequently Used访问次数最少的优先剔除):
我们可以通过使用 info memory 命令查看内存使用情况
127.0.0.1:6379> info memory # Memory used_memory:911136 used_memory_human:889.78K //已经使用内存 used_memory_rss:2678784 used_memory_rss_human:2.55M used_memory_peak:911248 used_memory_peak_human:889.89K used_memory_peak_perc:99.99% used_memory_overhead:910574 used_memory_startup:860880 used_memory_dataset:562 used_memory_dataset_perc:1.12% allocator_allocated:878296 allocator_active:2640896 allocator_resident:2640896 total_system_memory:1907941376 total_system_memory_human:1.78G used_memory_lua:37888 used_memory_lua_human:37.00K used_memory_scripts:0 used_memory_scripts_human:0B number_of_cached_scripts:0 maxmemory:104857600 //最大内存 maxmemory_human:100.00M //最大内存 maxmemory_policy:allkeys-lru //最大内存策略,使用lru策略 allocator_frag_ratio:3.01 allocator_frag_bytes:1762600 allocator_rss_ratio:1.00 allocator_rss_bytes:0 rss_overhead_ratio:1.01 rss_overhead_bytes:37888 mem_fragmentation_ratio:3.05 mem_fragmentation_bytes:1800488 mem_not_counted_for_evict:0 mem_replication_backlog:0 mem_clients_slaves:0 mem_clients_normal:49694 mem_aof_buffer:0 mem_allocator:libc active_defrag_running:0 lazyfree_pending_objects:0
18.2、sdk演示
sdk插入数据进行观察内存变化,可以看到始终保持100M的内存
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.43.62:6379"); var db = redis.GetDatabase(0); for (int i = 0; i < int.MaxValue; i++) { var val = string.Join(",", Enumerable.Range(0, 10000)); db.StringSet(i.ToString(), val); Console.WriteLine($"当前{i} 塞入成功!"); } Console.ReadKey(); } }
使用redis-cli查看
127.0.0.1:6379> info memory # Memory used_memory:104808424 used_memory_human:99.95M used_memory_rss:171360256 used_memory_rss_human:163.42M used_memory_peak:104857232 used_memory_peak_human:100.00M used_memory_peak_perc:99.95% used_memory_overhead:1110857 used_memory_startup:860896 used_memory_dataset:103697567 used_memory_dataset_perc:99.76% allocator_allocated:104775568 allocator_active:171322368 allocator_resident:171322368 total_system_memory:1907941376 total_system_memory_human:1.78G used_memory_lua:37888 used_memory_lua_human:37.00K used_memory_scripts:0 used_memory_scripts_human:0B number_of_cached_scripts:0 maxmemory:104857600 maxmemory_human:100.00M maxmemory_policy:allkeys-lru allocator_frag_ratio:1.64 allocator_frag_bytes:66546800 allocator_rss_ratio:1.00 allocator_rss_bytes:0 rss_overhead_ratio:1.00 rss_overhead_bytes:37888 mem_fragmentation_ratio:1.64 mem_fragmentation_bytes:66584688 mem_not_counted_for_evict:0 mem_replication_backlog:0 mem_clients_slaves:0 mem_clients_normal:132433 mem_aof_buffer:0 mem_allocator:libc active_defrag_running:0 lazyfree_pending_objects:0
18.3、源码简要研究
redis 怎么知道剔除呢? 它是根据时间来进行控制的,怎么给对象安装上时间的?我们首先要查看 redisObject 对象中的 lru
#define OBJ_SHARED_REFCOUNT INT_MAX typedef struct redisObject { unsigned type:4; unsigned encoding:4; unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock 自动记录系统时钟) or * LFU data (least significant 8 bits frequency * and most significant 16 bits access time 记录最少次数).getcommond的时候会给lru赋值 */ int refcount; void *ptr; } robj;
我们接下来查看一下 getCommand 源码
void getCommand(client *c) { getGenericCommand(c); }
我们接下来查看一下 getGenericCommand 源码
int getGenericCommand(client *c) { robj *o; if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.nullbulk)) == NULL) return C_OK; if (o->type != OBJ_STRING) { addReply(c,shared.wrongtypeerr); return C_ERR; } else { addReplyBulk(c,o); return C_OK; } }
我们接下来查看一下 lookupKeyReadOrReply 源码
robj *lookupKeyReadOrReply(client *c, robj *key, robj *reply) { robj *o = lookupKeyRead(c->db, key); if (!o) addReply(c,reply); return o; }
我们接下来查看一下 lookupKeyRead 源码
/* Like lookupKeyReadWithFlags(), but does not use any flag, which is the * common case. */ robj *lookupKeyRead(redisDb *db, robj *key) { return lookupKeyReadWithFlags(db,key,LOOKUP_NONE); }
我们接下来查看一下 lookupKeyReadWithFlags 源码
/* Lookup a key for read operations, or return NULL if the key is not found * in the specified DB. * * As a side effect of calling this function: * 1. A key gets expired if it reached it's TTL. * 2. The key last access time is updated. * 3. The global keys hits/misses stats are updated (reported in INFO). * * This API should not be used when we write to the key after obtaining * the object linked to the key, but only for read only operations. * * Flags change the behavior of this command: * * LOOKUP_NONE (or zero): no special flags are passed. * LOOKUP_NOTOUCH: don't alter the last access time of the key. * * Note: this function also returns NULL if the key is logically expired * but still existing, in case this is a slave, since this API is called only * for read operations. Even if the key expiry is master-driven, we can * correctly report a key is expired on slaves even if the master is lagging * expiring our key via DELs in the replication link. */ robj *lookupKeyReadWithFlags(redisDb *db, robj *key, int flags) { robj *val; if (expireIfNeeded(db,key) == 1) { /* Key expired. If we are in the context of a master, expireIfNeeded() * returns 0 only when the key does not exist at all, so it's safe * to return NULL ASAP. */ if (server.masterhost == NULL) { server.stat_keyspace_misses++; return NULL; } /* However if we are in the context of a slave, expireIfNeeded() will * not really try to expire the key, it only returns information * about the "logical" status of the key: key expiring is up to the * master in order to have a consistent view of master's data set. * * However, if the command caller is not the master, and as additional * safety measure, the command invoked is a read-only command, we can * safely return NULL here, and provide a more consistent behavior * to clients accessign expired values in a read-only fashion, that * will say the key as non existing. * * Notably this covers GETs when slaves are used to scale reads. */ if (server.current_client && server.current_client != server.master && server.current_client->cmd && server.current_client->cmd->flags & CMD_READONLY) { server.stat_keyspace_misses++; return NULL; } } val = lookupKey(db,key,flags); if (val == NULL) server.stat_keyspace_misses++; else server.stat_keyspace_hits++; return val; }
我们接下来查看一下 lookupKey 源码
/* Low level key lookup API, not actually called directly from commands * implementations that should instead rely on lookupKeyRead(), * lookupKeyWrite() and lookupKeyReadWithFlags(). */ robj *lookupKey(redisDb *db, robj *key, int flags) { dictEntry *de = dictFind(db->dict,key->ptr); if (de) { robj *val = dictGetVal(de); /* Update the access time for the ageing algorithm. * Don't do it if we have a saving child, as this will trigger * a copy on write madness. */ if (server.rdb_child_pid == -1 && server.aof_child_pid == -1 && !(flags & LOOKUP_NOTOUCH)) { if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {//如果是lfu会更新系统值 updateLFU(val); } else {//如果是lru会赋值系统时钟 val->lru = LRU_CLOCK(); } } return val; } else { return NULL; } }
我们接下来查看一下 createObject 源码
robj *createObject(int type, void *ptr) { robj *o = zmalloc(sizeof(*o)); o->type = type; o->encoding = OBJ_ENCODING_RAW; o->ptr = ptr; o->refcount = 1; /* Set the LRU to the current lruclock (minutes resolution), or * alternatively the LFU counter. */ //分配lru时间 if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) { o->lru = (LFUGetTimeInMinutes()<<8) | LFU_INIT_VAL; } else { o->lru = LRU_CLOCK(); } return o; }
我们接下来查看一下 freeMemoryIfNeeded 源码
/* This function is periodically called to see if there is memory to free * according to the current "maxmemory" settings. In case we are over the * memory limit, the function will try to free some memory to return back * under the limit. * * The function returns C_OK if we are under the memory limit or if we * were over the limit, but the attempt to free memory was successful. * Otehrwise if we are over the memory limit, but not enough memory * was freed to return back under the limit, the function returns C_ERR. */ int freeMemoryIfNeeded(void) { /* By default replicas should ignore maxmemory * and just be masters exact copies. */ if (server.masterhost && server.repl_slave_ignore_maxmemory) return C_OK; size_t mem_reported, mem_tofree, mem_freed; mstime_t latency, eviction_latency; long long delta; int slaves = listLength(server.slaves); /* When clients are paused the dataset should be static not just from the * POV of clients not being able to write, but also from the POV of * expires and evictions of keys not being performed. */ if (clientsArePaused()) return C_OK; if (getMaxmemoryState(&mem_reported,NULL,&mem_tofree,NULL) == C_OK) return C_OK; mem_freed = 0; if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION) goto cant_free; /* We need to free memory, but policy forbids. */ latencyStartMonitor(latency); while (mem_freed < mem_tofree) { int j, k, i, keys_freed = 0; static unsigned int next_db = 0; sds bestkey = NULL; int bestdbid; redisDb *db; dict *dict; dictEntry *de; if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) || server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) { struct evictionPoolEntry *pool = EvictionPoolLRU; while(bestkey == NULL) { unsigned long total_keys = 0, keys; /* We don't want to make local-db choices when expiring keys, * so to start populate the eviction pool sampling keys from * every DB. */ for (i = 0; i < server.dbnum; i++) {//遍历数据库 db = server.db+i; dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?//如果ALLkeys,则从所有的key中去找,否则从待过期的时间中去找 db->dict : db->expires; if ((keys = dictSize(dict)) != 0) { evictionPoolPopulate(i, dict, db->dict, pool); total_keys += keys; } } if (!total_keys) break; /* No keys to evict. *///没有key则退出 /* Go backward from best to worst element to evict. */ for (k = EVPOOL_SIZE-1; k >= 0; k--) { if (pool[k].key == NULL) continue; bestdbid = pool[k].dbid; if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) { de = dictFind(server.db[pool[k].dbid].dict, pool[k].key); } else { de = dictFind(server.db[pool[k].dbid].expires, pool[k].key); } /* Remove the entry from the pool. */ if (pool[k].key != pool[k].cached) sdsfree(pool[k].key); pool[k].key = NULL; pool[k].idle = 0; /* If the key exists, is our pick. Otherwise it is * a ghost and we need to try the next element. */ if (de) { bestkey = dictGetKey(de); break; } else { /* Ghost... Iterate again. */ } } } } /* volatile-random and allkeys-random policy */ else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM || server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM) { /* When evicting a random key, we try to evict a key for * each DB, so we use the static 'next_db' variable to * incrementally visit all DBs. */ for (i = 0; i < server.dbnum; i++) { j = (++next_db) % server.dbnum; db = server.db+j; dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ? db->dict : db->expires; if (dictSize(dict) != 0) { de = dictGetRandomKey(dict); bestkey = dictGetKey(de); bestdbid = j; break; } } } /* Finally remove the selected key. *///最终移除选择key if (bestkey) { db = server.db+bestdbid; robj *keyobj = createStringObject(bestkey,sdslen(bestkey)); propagateExpire(db,keyobj,server.lazyfree_lazy_eviction); /* We compute the amount of memory freed by db*Delete() alone. * It is possible that actually the memory needed to propagate * the DEL in AOF and replication link is greater than the one * we are freeing removing the key, but we can't account for * that otherwise we would never exit the loop. * * AOF and Output buffer memory will be freed eventually so * we only care about memory used by the key space. */ delta = (long long) zmalloc_used_memory(); latencyStartMonitor(eviction_latency); if (server.lazyfree_lazy_eviction) dbAsyncDelete(db,keyobj); else dbSyncDelete(db,keyobj); latencyEndMonitor(eviction_latency); latencyAddSampleIfNeeded("eviction-del",eviction_latency); latencyRemoveNestedEvent(latency,eviction_latency); delta -= (long long) zmalloc_used_memory(); mem_freed += delta; server.stat_evictedkeys++; notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted", keyobj, db->id); decrRefCount(keyobj); keys_freed++; /* When the memory to free starts to be big enough, we may * start spending so much time here that is impossible to * deliver data to the slaves fast enough, so we force the * transmission here inside the loop. */ if (slaves) flushSlavesOutputBuffers(); /* Normally our stop condition is the ability to release * a fixed, pre-computed amount of memory. However when we * are deleting objects in another thread, it's better to * check, from time to time, if we already reached our target * memory, since the "mem_freed" amount is computed only * across the dbAsyncDelete() call, while the thread can * release the memory all the time. */ if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) { if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) { /* Let's satisfy our stop condition. */ mem_freed = mem_tofree; } } } if (!keys_freed) { latencyEndMonitor(latency); latencyAddSampleIfNeeded("eviction-cycle",latency); goto cant_free; /* nothing to free... */ } } latencyEndMonitor(latency); latencyAddSampleIfNeeded("eviction-cycle",latency); return C_OK; cant_free: /* We are here if we are not able to reclaim memory. There is only one * last thing we can try: check if the lazyfree thread has jobs in queue * and wait... */ while(bioPendingJobsOfType(BIO_LAZY_FREE)) { if (((mem_reported - zmalloc_used_memory()) + mem_freed) >= mem_tofree) break; usleep(1000); } return C_ERR; }
19、【限流分布锁】限流和分布式锁的场景介绍及sdk代码演示
19.1、Redis实现限流
- 场景
- 防爬虫,限制某个接口的调用频次。 (10个/s)
- 限制并统计接口调用次数,按万次收费。
- 实现思想
- 漏桶算法
可以有效的保护下游的系统。 - 令牌桶算法
- 区别
漏桶算法是铁定的恒定输出。
令牌桶算法是可支持短暂的突然流量。
- 漏桶算法
- 实现
- string 的 incr 或者 set/get 实现(lua脚本实现)
令牌桶lua脚本(基于string的insr)
-- redis的key -- keys[1]: ip local rediskey="rate.limit."..KEYS[1]; local limit= redis.call("incr",rediskey); --每一个请求来了,我自增+1 local isOk=1; -- 这是第一次加入 if limit == 1 then redis.call("expire",rediskey,1); -- 这个key只有1s的有效期 else if limit >10 then --每秒中 10 个令牌 isOk=0; else redis.call("incr",rediskey); end end return isOk;
令牌桶lua脚本(基于get/set)
local seconds=redis.call("time")[1]; local rediskey="rate.limit."..seconds .."." ..KEYS[1]; local limit= redis.call("get",rediskey); local isOk=1; -- 第一次加入 if limit==false then redis.call("set",rediskey,1,"EX",1); -- 10s 过期 else if tonumber(limit) >10 then isOk=0; else redis.call("incr",rediskey); end end return isOk;
sdk执行脚本
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.2.107:6379"); var db = redis.GetDatabase(0); var script = File.ReadAllText("api.lua"); while (true) { var result= db.ScriptEvaluate(script, new RedisKey[1] { "192.168.1.1" }); Console.WriteLine(result); //1秒大约是12个请求 Thread.Sleep(80); } Console.ReadKey(); } }
- list 的 lpush 实现
lua脚本
-- redis的key local ip=KEYS[1]; local rediskey="rate.limit."..ip; local limit= redis.call("llen",rediskey); local isOk=1; if limit > 10 then isOk=0; else redis.call("lpush",rediskey,ip); if limit ==1 then redis.call("expire",rediskey,1); -- 这个key只有1s的有效期 end end return isOk;
sdk执行脚本
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.2.107:6379"); var db = redis.GetDatabase(0); var script = File.ReadAllText("api2.lua"); while (true) { var result= db.ScriptEvaluate(script, new RedisKey[1] { "192.168.1.1" }); Console.WriteLine(result); //1秒大约是12个请求 Thread.Sleep(80); } Console.ReadKey(); } }
- string 的 incr 或者 set/get 实现(lua脚本实现)
19.2、SDK中的分布式锁
官方网址参考:https://redis.io/topics/distlock
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.2.107:6379"); var db = redis.GetDatabase(0); var isTake = db.LockTake("lock", "12345", TimeSpan.FromMinutes(10));//获取锁 if (isTake) { //TODO var isRelease = db.LockRelease("lock", "12345");//释放锁,释放锁的key和value要和获取锁保持一致 } Console.ReadKey(); } }
SDK实现
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.2.107:6379"); var db = redis.GetDatabase(0); var isTake = db.LockTake("lock", "12345", TimeSpan.FromMinutes(10));//获取锁,期间会执行set lock 12345 EX 600 NX if (isTake) { //TODO var isRelease = db.LockRelease("lock", "12345"); /* * 释放锁,释放锁的key和value要和获取锁保持一致 * 期间会执行set lock 12345 EX 600 NX * watch lock * get lock * 然后根据获取的lock进行下一步执行是否需要继续执行,因为当你del的时候,你要确定这个lock就是你当初创建lock * multi * del lock * 最后 * exec */ } Console.ReadKey(); } }
20、【Stream】对流式处理的理解和常用的stream命令介绍
20.1、什么叫做流式处理
- 场景
很多数据会随着时间的推移价值大大流逝,所以需要实时计算。 - 流式处理的特征
- 事先定义好计算模型。【机器学习 】
- 数据持续的输入, 结果持续的输出。
- 例子1:金融风控:当前申请贷款的人: 是男是女,年龄多少,家里几套房,户口,银行流水怎样,有没有不良记录等等。。。 结果要实时反馈。影像到贷款的多少。。
- 例子2:实时预测:比如我们的这类系统,当用户下单之后尽快给用户推送,根据订单金额,提供贡献度,所在地区,黑名单 等等,发送实时的 猜你喜欢,实施可能的二次回购。
20.2、理解Redis中的流结构Stream(5.0)
官方文档参考:https://redis.io/topics/streams-intro
官方命令文档:https://redis.io/commands#stream
The Stream is a new data type introduced with Redis 5.0, which models a log data structure in a more abstract way, however the essence of the log is still intact: like a log file, often implemented as a file open in append only mode, Redis streams are primarily an append only data structure. At least conceptually, because being Redis Streams an abstract data type represented in memory, they implement more powerful operations, to overcome the limits of the log file itself. /*****************************/ Stream是Redis 5.0引入的一种新的数据类型,它以更抽象的方式对日志数据结构进行建模,但是日志的本质仍然是完整的:就像日志文件一样,Redis streams通常是以仅附加模式打开的文件,主要是一种仅附加的数据结构。至少在概念上,因为Redis Streams是内存中表示的抽象数据类型,所以它们实现了更强大的操作,以克服日志文件本身的限制。
理解redis中的stream 模型
可以看出,写入是最后一条写入,读取的话按序号向下取
127.0.0.1:6379> xadd logs * c1 c1 "1549195730591-0" //结构解析为时间+序号 127.0.0.1:6379> xadd logs * c2 c2 "1549197993824-0" //结构解析为时间+序号 127.0.0.1:6379> xadd logs * c3 c3 "1549198001356-0" //结构解析为时间+序号 127.0.0.1:6379> xread streams logs 1549197993824-0 //读取当前序号的下一条 1) 1) "logs" 2) 1) 1) "1549198001356-0" 2) 1) "c3" 2) "c3" 127.0.0.1:6379> xread streams logs 0 //读取所有,从0之后嘛 1) 1) "logs" 2) 1) 1) "1549195730591-0" 2) 1) "c1" 2) "c1" 2) 1) "1549197993824-0" 2) 1) "c2" 2) "c2" 3) 1) "1549198001356-0" 2) 1) "c3" 2) "c3" 127.0.0.1:6379> xread streams logs $ //读取最后一条之后,就是没有咯 (nil) 127.0.0.1:6379> xread count 1 streams logs 0 //读取第一行 1) 1) "logs" 2) 1) 1) "1549195730591-0" 2) 1) "c1" 2) "c1" 127.0.0.1:6379> xread count 2 streams logs 0 //读取前两行 1) 1) "logs" 2) 1) 1) "1549195730591-0" 2) 1) "c1" 2) "c1" 2) 1) "1549197993824-0" 2) 1) "c2" 2) "c2"
20.3、SDK实现发布订阅与数据保持
- 使用Xadd + XRead 实现 发布订阅的功能
redis:publish/subscribe (不存储数据)
stream: 存储数据的。
- SDK实现
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.2.107:6379"); var db = redis.GetDatabase(0); RedisValue nextID = (DateTime.Now.ToUniversalTime().Ticks - 621355968000000000) / 10000;//c#获取毫秒数 while (true) { var list = db.StreamRead("logs", nextID, 1); if (list.Length == 0) { Thread.Sleep(10); continue; } var single = list[0]; //有点类似于游标 nextID = single.Id; Console.WriteLine(single.Values[0]); } Console.ReadKey(); } }
20.4、SDK实现xgroup, xreadgroup 实现多分组
127.0.0.1:6379> xrange logs - + 1) 1) "1549195730591-0" 2) 1) "c1" 2) "c1" 2) 1) "1549197993824-0" 2) 1) "c2" 2) "c2" 3) 1) "1549198001356-0" 2) 1) "c3" 2) "c3" 4) 1) "1549199460391-0" 2) 1) "c4" 2) "c4" 5) 1) "1549199719371-0" 2) 1) "c5" 2) "c5" 127.0.0.1:6379> xgroup create logs ctrip 1549197993824-0 //创建分组ctrip读取,从c2开始 OK 127.0.0.1:6379> xreadgroup group ctrip jack streams logs > //按分组往后读取ctrip 1) 1) "logs" 2) 1) 1) "1549198001356-0" 2) 1) "c3" 2) "c3" 2) 1) "1549199460391-0" 2) 1) "c4" 2) "c4" 3) 1) "1549199719371-0" 2) 1) "c5" 2) "c5" 127.0.0.1:6379> xinfo groups logs //查看所有的组信息 1) 1) "name" 2) "ctrip" 3) "consumers" 4) (integer) 1 5) "pending" //阻塞3个,是因为redis中流处理类似于rabbitmq中的ack机制 6) (integer) 3 7) "last-delivered-id" 8) "1549199719371-0"
SDK实现
业务1模拟(mary)
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.2.107:6379"); var db = redis.GetDatabase(0); while (true) { var entrylist = db.StreamReadGroup("logs", "ctrip", "mary", ">", count: 1); if (entrylist.Length == 0) { Console.WriteLine("暂无数据!"); Thread.Sleep(1000); continue; } var single = entrylist[0]; Console.WriteLine(single.Values[0]); //提交给redis确认(ack) db.StreamAcknowledge("logs", "ctrip", single.Id); } Console.ReadKey(); } }
业务2模拟(Jack)
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.2.107:6379"); var db = redis.GetDatabase(0); while (true) { var entrylist = db.StreamReadGroup("logs", "ctrip", "jack", ">", count: 1); if (entrylist.Length == 0) { Console.WriteLine("暂无数据!"); Thread.Sleep(1000); continue; } var single = entrylist[0]; Console.WriteLine(single.Values[0]); //提交给redis确认(ack) db.StreamAcknowledge("logs", "ctrip", single.Id); } Console.ReadKey(); } }
模拟数据插入
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.2.107:6379"); var db = redis.GetDatabase(0); for (int i = 0; i < int.MaxValue; i++) { db.StreamAdd("logs", i, i); Thread.Sleep(200); } Console.ReadKey(); } }
效果展示:资源竞争处理
21、【Module】模块概念认知及sql on redis的RediSQL介绍
21.1、什么是module
redis4.0之后支持了module,第三方机构可以给予redis开发自己的module。通过module 给 redis添加新的数据类型,(bloomfilter,sql on redis)
This is a list of Redis modules, for Redis v4.0 or greater, ordered by Github stars. This list contains two set of modules: modules under an OSI approved license, and modules that are under some proprietary license. Non OSI modules are clearly flagged as not open source. Also to have the source code hosted at Github is currently mandatory. To add your module here please send a pull request for the modules.json file in the Redis-doc repository. /**********************/ 这是一个Redis模块列表,适用于Redis v4.0或更高版本,由Github stars订购。这个列表包含两组模块:OSI批准的许可下的模块,以及一些私有许可下的模块。非OSI模块被明确标记为非开源。同时,将源代码托管在Github上也是必须的。要在这里添加模块,请发送模块的拉取请求。Redis-doc存储库中的json文件。
21.2、实现一个简单的module
- 引用redismodule.h 头文件、初始化函数 RedisModule_Init(在源码中,要拷贝进来)
#ifndef REDISMODULE_H #define REDISMODULE_H #include <sys/types.h> #include <stdint.h> #include <stdio.h> /* ---------------- Defines common between core and modules --------------- */ /* Error status return values. */ #define REDISMODULE_OK 0 #define REDISMODULE_ERR 1 /* API versions. */ #define REDISMODULE_APIVER_1 1 /* API flags and constants */ #define REDISMODULE_READ (1<<0) #define REDISMODULE_WRITE (1<<1) #define REDISMODULE_LIST_HEAD 0 #define REDISMODULE_LIST_TAIL 1 /* Key types. */ #define REDISMODULE_KEYTYPE_EMPTY 0 #define REDISMODULE_KEYTYPE_STRING 1 #define REDISMODULE_KEYTYPE_LIST 2 #define REDISMODULE_KEYTYPE_HASH 3 #define REDISMODULE_KEYTYPE_SET 4 #define REDISMODULE_KEYTYPE_ZSET 5 #define REDISMODULE_KEYTYPE_MODULE 6 /* Reply types. */ #define REDISMODULE_REPLY_UNKNOWN -1 #define REDISMODULE_REPLY_STRING 0 #define REDISMODULE_REPLY_ERROR 1 #define REDISMODULE_REPLY_INTEGER 2 #define REDISMODULE_REPLY_ARRAY 3 #define REDISMODULE_REPLY_NULL 4 /* Postponed array length. */ #define REDISMODULE_POSTPONED_ARRAY_LEN -1 /* Expire */ #define REDISMODULE_NO_EXPIRE -1 /* Sorted set API flags. */ #define REDISMODULE_ZADD_XX (1<<0) #define REDISMODULE_ZADD_NX (1<<1) #define REDISMODULE_ZADD_ADDED (1<<2) #define REDISMODULE_ZADD_UPDATED (1<<3) #define REDISMODULE_ZADD_NOP (1<<4) /* Hash API flags. */ #define REDISMODULE_HASH_NONE 0 #define REDISMODULE_HASH_NX (1<<0) #define REDISMODULE_HASH_XX (1<<1) #define REDISMODULE_HASH_CFIELDS (1<<2) #define REDISMODULE_HASH_EXISTS (1<<3) /* Context Flags: Info about the current context returned by * RM_GetContextFlags(). */ /* The command is running in the context of a Lua script */ #define REDISMODULE_CTX_FLAGS_LUA (1<<0) /* The command is running inside a Redis transaction */ #define REDISMODULE_CTX_FLAGS_MULTI (1<<1) /* The instance is a master */ #define REDISMODULE_CTX_FLAGS_MASTER (1<<2) /* The instance is a slave */ #define REDISMODULE_CTX_FLAGS_SLAVE (1<<3) /* The instance is read-only (usually meaning it's a slave as well) */ #define REDISMODULE_CTX_FLAGS_READONLY (1<<4) /* The instance is running in cluster mode */ #define REDISMODULE_CTX_FLAGS_CLUSTER (1<<5) /* The instance has AOF enabled */ #define REDISMODULE_CTX_FLAGS_AOF (1<<6) /* The instance has RDB enabled */ #define REDISMODULE_CTX_FLAGS_RDB (1<<7) /* The instance has Maxmemory set */ #define REDISMODULE_CTX_FLAGS_MAXMEMORY (1<<8) /* Maxmemory is set and has an eviction policy that may delete keys */ #define REDISMODULE_CTX_FLAGS_EVICT (1<<9) /* Redis is out of memory according to the maxmemory flag. */ #define REDISMODULE_CTX_FLAGS_OOM (1<<10) /* Less than 25% of memory available according to maxmemory. */ #define REDISMODULE_CTX_FLAGS_OOM_WARNING (1<<11) #define REDISMODULE_NOTIFY_GENERIC (1<<2) /* g */ #define REDISMODULE_NOTIFY_STRING (1<<3) /* $ */ #define REDISMODULE_NOTIFY_LIST (1<<4) /* l */ #define REDISMODULE_NOTIFY_SET (1<<5) /* s */ #define REDISMODULE_NOTIFY_HASH (1<<6) /* h */ #define REDISMODULE_NOTIFY_ZSET (1<<7) /* z */ #define REDISMODULE_NOTIFY_EXPIRED (1<<8) /* x */ #define REDISMODULE_NOTIFY_EVICTED (1<<9) /* e */ #define REDISMODULE_NOTIFY_STREAM (1<<10) /* t */ #define REDISMODULE_NOTIFY_ALL (REDISMODULE_NOTIFY_GENERIC | REDISMODULE_NOTIFY_STRING | REDISMODULE_NOTIFY_LIST | REDISMODULE_NOTIFY_SET | REDISMODULE_NOTIFY_HASH | REDISMODULE_NOTIFY_ZSET | REDISMODULE_NOTIFY_EXPIRED | REDISMODULE_NOTIFY_EVICTED | REDISMODULE_NOTIFY_STREAM) /* A */ /* A special pointer that we can use between the core and the module to signal * field deletion, and that is impossible to be a valid pointer. */ #define REDISMODULE_HASH_DELETE ((RedisModuleString*)(long)1) /* Error messages. */ #define REDISMODULE_ERRORMSG_WRONGTYPE "WRONGTYPE Operation against a key holding the wrong kind of value" #define REDISMODULE_POSITIVE_INFINITE (1.0/0.0) #define REDISMODULE_NEGATIVE_INFINITE (-1.0/0.0) /* Cluster API defines. */ #define REDISMODULE_NODE_ID_LEN 40 #define REDISMODULE_NODE_MYSELF (1<<0) #define REDISMODULE_NODE_MASTER (1<<1) #define REDISMODULE_NODE_SLAVE (1<<2) #define REDISMODULE_NODE_PFAIL (1<<3) #define REDISMODULE_NODE_FAIL (1<<4) #define REDISMODULE_NODE_NOFAILOVER (1<<5) #define REDISMODULE_CLUSTER_FLAG_NONE 0 #define REDISMODULE_CLUSTER_FLAG_NO_FAILOVER (1<<1) #define REDISMODULE_CLUSTER_FLAG_NO_REDIRECTION (1<<2) #define REDISMODULE_NOT_USED(V) ((void) V) /* This type represents a timer handle, and is returned when a timer is * registered and used in order to invalidate a timer. It's just a 64 bit * number, because this is how each timer is represented inside the radix tree * of timers that are going to expire, sorted by expire time. */ typedef uint64_t RedisModuleTimerID; /* ------------------------- End of common defines ------------------------ */ #ifndef REDISMODULE_CORE typedef long long mstime_t; /* Incomplete structures for compiler checks but opaque access. */ typedef struct RedisModuleCtx RedisModuleCtx; typedef struct RedisModuleKey RedisModuleKey; typedef struct RedisModuleString RedisModuleString; typedef struct RedisModuleCallReply RedisModuleCallReply; typedef struct RedisModuleIO RedisModuleIO; typedef struct RedisModuleType RedisModuleType; typedef struct RedisModuleDigest RedisModuleDigest; typedef struct RedisModuleBlockedClient RedisModuleBlockedClient; typedef struct RedisModuleClusterInfo RedisModuleClusterInfo; typedef struct RedisModuleDict RedisModuleDict; typedef struct RedisModuleDictIter RedisModuleDictIter; typedef int (*RedisModuleCmdFunc)(RedisModuleCtx *ctx, RedisModuleString **argv, int argc); typedef void (*RedisModuleDisconnectFunc)(RedisModuleCtx *ctx, RedisModuleBlockedClient *bc); typedef int (*RedisModuleNotificationFunc)(RedisModuleCtx *ctx, int type, const char *event, RedisModuleString *key); typedef void *(*RedisModuleTypeLoadFunc)(RedisModuleIO *rdb, int encver); typedef void (*RedisModuleTypeSaveFunc)(RedisModuleIO *rdb, void *value); typedef void (*RedisModuleTypeRewriteFunc)(RedisModuleIO *aof, RedisModuleString *key, void *value); typedef size_t (*RedisModuleTypeMemUsageFunc)(const void *value); typedef void (*RedisModuleTypeDigestFunc)(RedisModuleDigest *digest, void *value); typedef void (*RedisModuleTypeFreeFunc)(void *value); typedef void (*RedisModuleClusterMessageReceiver)(RedisModuleCtx *ctx, const char *sender_id, uint8_t type, const unsigned char *payload, uint32_t len); typedef void (*RedisModuleTimerProc)(RedisModuleCtx *ctx, void *data); #define REDISMODULE_TYPE_METHOD_VERSION 1 typedef struct RedisModuleTypeMethods { uint64_t version; RedisModuleTypeLoadFunc rdb_load; RedisModuleTypeSaveFunc rdb_save; RedisModuleTypeRewriteFunc aof_rewrite; RedisModuleTypeMemUsageFunc mem_usage; RedisModuleTypeDigestFunc digest; RedisModuleTypeFreeFunc free; } RedisModuleTypeMethods; #define REDISMODULE_GET_API(name) \ RedisModule_GetApi("RedisModule_" #name, ((void **)&RedisModule_ ## name)) #define REDISMODULE_API_FUNC(x) (*x) void *REDISMODULE_API_FUNC(RedisModule_Alloc)(size_t bytes); void *REDISMODULE_API_FUNC(RedisModule_Realloc)(void *ptr, size_t bytes); void REDISMODULE_API_FUNC(RedisModule_Free)(void *ptr); void *REDISMODULE_API_FUNC(RedisModule_Calloc)(size_t nmemb, size_t size); char *REDISMODULE_API_FUNC(RedisModule_Strdup)(const char *str); int REDISMODULE_API_FUNC(RedisModule_GetApi)(const char *, void *); int REDISMODULE_API_FUNC(RedisModule_CreateCommand)(RedisModuleCtx *ctx, const char *name, RedisModuleCmdFunc cmdfunc, const char *strflags, int firstkey, int lastkey, int keystep); void REDISMODULE_API_FUNC(RedisModule_SetModuleAttribs)(RedisModuleCtx *ctx, const char *name, int ver, int apiver); int REDISMODULE_API_FUNC(RedisModule_IsModuleNameBusy)(const char *name); int REDISMODULE_API_FUNC(RedisModule_WrongArity)(RedisModuleCtx *ctx); int REDISMODULE_API_FUNC(RedisModule_ReplyWithLongLong)(RedisModuleCtx *ctx, long long ll); int REDISMODULE_API_FUNC(RedisModule_GetSelectedDb)(RedisModuleCtx *ctx); int REDISMODULE_API_FUNC(RedisModule_SelectDb)(RedisModuleCtx *ctx, int newid); void *REDISMODULE_API_FUNC(RedisModule_OpenKey)(RedisModuleCtx *ctx, RedisModuleString *keyname, int mode); void REDISMODULE_API_FUNC(RedisModule_CloseKey)(RedisModuleKey *kp); int REDISMODULE_API_FUNC(RedisModule_KeyType)(RedisModuleKey *kp); size_t REDISMODULE_API_FUNC(RedisModule_ValueLength)(RedisModuleKey *kp); int REDISMODULE_API_FUNC(RedisModule_ListPush)(RedisModuleKey *kp, int where, RedisModuleString *ele); RedisModuleString *REDISMODULE_API_FUNC(RedisModule_ListPop)(RedisModuleKey *key, int where); RedisModuleCallReply *REDISMODULE_API_FUNC(RedisModule_Call)(RedisModuleCtx *ctx, const char *cmdname, const char *fmt, ...); const char *REDISMODULE_API_FUNC(RedisModule_CallReplyProto)(RedisModuleCallReply *reply, size_t *len); void REDISMODULE_API_FUNC(RedisModule_FreeCallReply)(RedisModuleCallReply *reply); int REDISMODULE_API_FUNC(RedisModule_CallReplyType)(RedisModuleCallReply *reply); long long REDISMODULE_API_FUNC(RedisModule_CallReplyInteger)(RedisModuleCallReply *reply); size_t REDISMODULE_API_FUNC(RedisModule_CallReplyLength)(RedisModuleCallReply *reply); RedisModuleCallReply *REDISMODULE_API_FUNC(RedisModule_CallReplyArrayElement)(RedisModuleCallReply *reply, size_t idx); RedisModuleString *REDISMODULE_API_FUNC(RedisModule_CreateString)(RedisModuleCtx *ctx, const char *ptr, size_t len); RedisModuleString *REDISMODULE_API_FUNC(RedisModule_CreateStringFromLongLong)(RedisModuleCtx *ctx, long long ll); RedisModuleString *REDISMODULE_API_FUNC(RedisModule_CreateStringFromString)(RedisModuleCtx *ctx, const RedisModuleString *str); RedisModuleString *REDISMODULE_API_FUNC(RedisModule_CreateStringPrintf)(RedisModuleCtx *ctx, const char *fmt, ...); void REDISMODULE_API_FUNC(RedisModule_FreeString)(RedisModuleCtx *ctx, RedisModuleString *str); const char *REDISMODULE_API_FUNC(RedisModule_StringPtrLen)(const RedisModuleString *str, size_t *len); int REDISMODULE_API_FUNC(RedisModule_ReplyWithError)(RedisModuleCtx *ctx, const char *err); int REDISMODULE_API_FUNC(RedisModule_ReplyWithSimpleString)(RedisModuleCtx *ctx, const char *msg); int REDISMODULE_API_FUNC(RedisModule_ReplyWithArray)(RedisModuleCtx *ctx, long len); void REDISMODULE_API_FUNC(RedisModule_ReplySetArrayLength)(RedisModuleCtx *ctx, long len); int REDISMODULE_API_FUNC(RedisModule_ReplyWithStringBuffer)(RedisModuleCtx *ctx, const char *buf, size_t len); int REDISMODULE_API_FUNC(RedisModule_ReplyWithString)(RedisModuleCtx *ctx, RedisModuleString *str); int REDISMODULE_API_FUNC(RedisModule_ReplyWithNull)(RedisModuleCtx *ctx); int REDISMODULE_API_FUNC(RedisModule_ReplyWithDouble)(RedisModuleCtx *ctx, double d); int REDISMODULE_API_FUNC(RedisModule_ReplyWithCallReply)(RedisModuleCtx *ctx, RedisModuleCallReply *reply); int REDISMODULE_API_FUNC(RedisModule_StringToLongLong)(const RedisModuleString *str, long long *ll); int REDISMODULE_API_FUNC(RedisModule_StringToDouble)(const RedisModuleString *str, double *d); void REDISMODULE_API_FUNC(RedisModule_AutoMemory)(RedisModuleCtx *ctx); int REDISMODULE_API_FUNC(RedisModule_Replicate)(RedisModuleCtx *ctx, const char *cmdname, const char *fmt, ...); int REDISMODULE_API_FUNC(RedisModule_ReplicateVerbatim)(RedisModuleCtx *ctx); const char *REDISMODULE_API_FUNC(RedisModule_CallReplyStringPtr)(RedisModuleCallReply *reply, size_t *len); RedisModuleString *REDISMODULE_API_FUNC(RedisModule_CreateStringFromCallReply)(RedisModuleCallReply *reply); int REDISMODULE_API_FUNC(RedisModule_DeleteKey)(RedisModuleKey *key); int REDISMODULE_API_FUNC(RedisModule_UnlinkKey)(RedisModuleKey *key); int REDISMODULE_API_FUNC(RedisModule_StringSet)(RedisModuleKey *key, RedisModuleString *str); char *REDISMODULE_API_FUNC(RedisModule_StringDMA)(RedisModuleKey *key, size_t *len, int mode); int REDISMODULE_API_FUNC(RedisModule_StringTruncate)(RedisModuleKey *key, size_t newlen); mstime_t REDISMODULE_API_FUNC(RedisModule_GetExpire)(RedisModuleKey *key); int REDISMODULE_API_FUNC(RedisModule_SetExpire)(RedisModuleKey *key, mstime_t expire); int REDISMODULE_API_FUNC(RedisModule_ZsetAdd)(RedisModuleKey *key, double score, RedisModuleString *ele, int *flagsptr); int REDISMODULE_API_FUNC(RedisModule_ZsetIncrby)(RedisModuleKey *key, double score, RedisModuleString *ele, int *flagsptr, double *newscore); int REDISMODULE_API_FUNC(RedisModule_ZsetScore)(RedisModuleKey *key, RedisModuleString *ele, double *score); int REDISMODULE_API_FUNC(RedisModule_ZsetRem)(RedisModuleKey *key, RedisModuleString *ele, int *deleted); void REDISMODULE_API_FUNC(RedisModule_ZsetRangeStop)(RedisModuleKey *key); int REDISMODULE_API_FUNC(RedisModule_ZsetFirstInScoreRange)(RedisModuleKey *key, double min, double max, int minex, int maxex); int REDISMODULE_API_FUNC(RedisModule_ZsetLastInScoreRange)(RedisModuleKey *key, double min, double max, int minex, int maxex); int REDISMODULE_API_FUNC(RedisModule_ZsetFirstInLexRange)(RedisModuleKey *key, RedisModuleString *min, RedisModuleString *max); int REDISMODULE_API_FUNC(RedisModule_ZsetLastInLexRange)(RedisModuleKey *key, RedisModuleString *min, RedisModuleString *max); RedisModuleString *REDISMODULE_API_FUNC(RedisModule_ZsetRangeCurrentElement)(RedisModuleKey *key, double *score); int REDISMODULE_API_FUNC(RedisModule_ZsetRangeNext)(RedisModuleKey *key); int REDISMODULE_API_FUNC(RedisModule_ZsetRangePrev)(RedisModuleKey *key); int REDISMODULE_API_FUNC(RedisModule_ZsetRangeEndReached)(RedisModuleKey *key); int REDISMODULE_API_FUNC(RedisModule_HashSet)(RedisModuleKey *key, int flags, ...); int REDISMODULE_API_FUNC(RedisModule_HashGet)(RedisModuleKey *key, int flags, ...); int REDISMODULE_API_FUNC(RedisModule_IsKeysPositionRequest)(RedisModuleCtx *ctx); void REDISMODULE_API_FUNC(RedisModule_KeyAtPos)(RedisModuleCtx *ctx, int pos); unsigned long long REDISMODULE_API_FUNC(RedisModule_GetClientId)(RedisModuleCtx *ctx); int REDISMODULE_API_FUNC(RedisModule_GetContextFlags)(RedisModuleCtx *ctx); void *REDISMODULE_API_FUNC(RedisModule_PoolAlloc)(RedisModuleCtx *ctx, size_t bytes); RedisModuleType *REDISMODULE_API_FUNC(RedisModule_CreateDataType)(RedisModuleCtx *ctx, const char *name, int encver, RedisModuleTypeMethods *typemethods); int REDISMODULE_API_FUNC(RedisModule_ModuleTypeSetValue)(RedisModuleKey *key, RedisModuleType *mt, void *value); RedisModuleType *REDISMODULE_API_FUNC(RedisModule_ModuleTypeGetType)(RedisModuleKey *key); void *REDISMODULE_API_FUNC(RedisModule_ModuleTypeGetValue)(RedisModuleKey *key); void REDISMODULE_API_FUNC(RedisModule_SaveUnsigned)(RedisModuleIO *io, uint64_t value); uint64_t REDISMODULE_API_FUNC(RedisModule_LoadUnsigned)(RedisModuleIO *io); void REDISMODULE_API_FUNC(RedisModule_SaveSigned)(RedisModuleIO *io, int64_t value); int64_t REDISMODULE_API_FUNC(RedisModule_LoadSigned)(RedisModuleIO *io); void REDISMODULE_API_FUNC(RedisModule_EmitAOF)(RedisModuleIO *io, const char *cmdname, const char *fmt, ...); void REDISMODULE_API_FUNC(RedisModule_SaveString)(RedisModuleIO *io, RedisModuleString *s); void REDISMODULE_API_FUNC(RedisModule_SaveStringBuffer)(RedisModuleIO *io, const char *str, size_t len); RedisModuleString *REDISMODULE_API_FUNC(RedisModule_LoadString)(RedisModuleIO *io); char *REDISMODULE_API_FUNC(RedisModule_LoadStringBuffer)(RedisModuleIO *io, size_t *lenptr); void REDISMODULE_API_FUNC(RedisModule_SaveDouble)(RedisModuleIO *io, double value); double REDISMODULE_API_FUNC(RedisModule_LoadDouble)(RedisModuleIO *io); void REDISMODULE_API_FUNC(RedisModule_SaveFloat)(RedisModuleIO *io, float value); float REDISMODULE_API_FUNC(RedisModule_LoadFloat)(RedisModuleIO *io); void REDISMODULE_API_FUNC(RedisModule_Log)(RedisModuleCtx *ctx, const char *level, const char *fmt, ...); void REDISMODULE_API_FUNC(RedisModule_LogIOError)(RedisModuleIO *io, const char *levelstr, const char *fmt, ...); int REDISMODULE_API_FUNC(RedisModule_StringAppendBuffer)(RedisModuleCtx *ctx, RedisModuleString *str, const char *buf, size_t len); void REDISMODULE_API_FUNC(RedisModule_RetainString)(RedisModuleCtx *ctx, RedisModuleString *str); int REDISMODULE_API_FUNC(RedisModule_StringCompare)(RedisModuleString *a, RedisModuleString *b); RedisModuleCtx *REDISMODULE_API_FUNC(RedisModule_GetContextFromIO)(RedisModuleIO *io); long long REDISMODULE_API_FUNC(RedisModule_Milliseconds)(void); void REDISMODULE_API_FUNC(RedisModule_DigestAddStringBuffer)(RedisModuleDigest *md, unsigned char *ele, size_t len); void REDISMODULE_API_FUNC(RedisModule_DigestAddLongLong)(RedisModuleDigest *md, long long ele); void REDISMODULE_API_FUNC(RedisModule_DigestEndSequence)(RedisModuleDigest *md); RedisModuleDict *REDISMODULE_API_FUNC(RedisModule_CreateDict)(RedisModuleCtx *ctx); void REDISMODULE_API_FUNC(RedisModule_FreeDict)(RedisModuleCtx *ctx, RedisModuleDict *d); uint64_t REDISMODULE_API_FUNC(RedisModule_DictSize)(RedisModuleDict *d); int REDISMODULE_API_FUNC(RedisModule_DictSetC)(RedisModuleDict *d, void *key, size_t keylen, void *ptr); int REDISMODULE_API_FUNC(RedisModule_DictReplaceC)(RedisModuleDict *d, void *key, size_t keylen, void *ptr); int REDISMODULE_API_FUNC(RedisModule_DictSet)(RedisModuleDict *d, RedisModuleString *key, void *ptr); int REDISMODULE_API_FUNC(RedisModule_DictReplace)(RedisModuleDict *d, RedisModuleString *key, void *ptr); void *REDISMODULE_API_FUNC(RedisModule_DictGetC)(RedisModuleDict *d, void *key, size_t keylen, int *nokey); void *REDISMODULE_API_FUNC(RedisModule_DictGet)(RedisModuleDict *d, RedisModuleString *key, int *nokey); int REDISMODULE_API_FUNC(RedisModule_DictDelC)(RedisModuleDict *d, void *key, size_t keylen, void *oldval); int REDISMODULE_API_FUNC(RedisModule_DictDel)(RedisModuleDict *d, RedisModuleString *key, void *oldval); RedisModuleDictIter *REDISMODULE_API_FUNC(RedisModule_DictIteratorStartC)(RedisModuleDict *d, const char *op, void *key, size_t keylen); RedisModuleDictIter *REDISMODULE_API_FUNC(RedisModule_DictIteratorStart)(RedisModuleDict *d, const char *op, RedisModuleString *key); void REDISMODULE_API_FUNC(RedisModule_DictIteratorStop)(RedisModuleDictIter *di); int REDISMODULE_API_FUNC(RedisModule_DictIteratorReseekC)(RedisModuleDictIter *di, const char *op, void *key, size_t keylen); int REDISMODULE_API_FUNC(RedisModule_DictIteratorReseek)(RedisModuleDictIter *di, const char *op, RedisModuleString *key); void *REDISMODULE_API_FUNC(RedisModule_DictNextC)(RedisModuleDictIter *di, size_t *keylen, void **dataptr); void *REDISMODULE_API_FUNC(RedisModule_DictPrevC)(RedisModuleDictIter *di, size_t *keylen, void **dataptr); RedisModuleString *REDISMODULE_API_FUNC(RedisModule_DictNext)(RedisModuleCtx *ctx, RedisModuleDictIter *di, void **dataptr); RedisModuleString *REDISMODULE_API_FUNC(RedisModule_DictPrev)(RedisModuleCtx *ctx, RedisModuleDictIter *di, void **dataptr); int REDISMODULE_API_FUNC(RedisModule_DictCompareC)(RedisModuleDictIter *di, const char *op, void *key, size_t keylen); int REDISMODULE_API_FUNC(RedisModule_DictCompare)(RedisModuleDictIter *di, const char *op, RedisModuleString *key); /* Experimental APIs */ #ifdef REDISMODULE_EXPERIMENTAL_API #define REDISMODULE_EXPERIMENTAL_API_VERSION 3 RedisModuleBlockedClient *REDISMODULE_API_FUNC(RedisModule_BlockClient)(RedisModuleCtx *ctx, RedisModuleCmdFunc reply_callback, RedisModuleCmdFunc timeout_callback, void (*free_privdata)(RedisModuleCtx*,void*), long long timeout_ms); int REDISMODULE_API_FUNC(RedisModule_UnblockClient)(RedisModuleBlockedClient *bc, void *privdata); int REDISMODULE_API_FUNC(RedisModule_IsBlockedReplyRequest)(RedisModuleCtx *ctx); int REDISMODULE_API_FUNC(RedisModule_IsBlockedTimeoutRequest)(RedisModuleCtx *ctx); void *REDISMODULE_API_FUNC(RedisModule_GetBlockedClientPrivateData)(RedisModuleCtx *ctx); RedisModuleBlockedClient *REDISMODULE_API_FUNC(RedisModule_GetBlockedClientHandle)(RedisModuleCtx *ctx); int REDISMODULE_API_FUNC(RedisModule_AbortBlock)(RedisModuleBlockedClient *bc); RedisModuleCtx *REDISMODULE_API_FUNC(RedisModule_GetThreadSafeContext)(RedisModuleBlockedClient *bc); void REDISMODULE_API_FUNC(RedisModule_FreeThreadSafeContext)(RedisModuleCtx *ctx); void REDISMODULE_API_FUNC(RedisModule_ThreadSafeContextLock)(RedisModuleCtx *ctx); void REDISMODULE_API_FUNC(RedisModule_ThreadSafeContextUnlock)(RedisModuleCtx *ctx); int REDISMODULE_API_FUNC(RedisModule_SubscribeToKeyspaceEvents)(RedisModuleCtx *ctx, int types, RedisModuleNotificationFunc cb); int REDISMODULE_API_FUNC(RedisModule_BlockedClientDisconnected)(RedisModuleCtx *ctx); void REDISMODULE_API_FUNC(RedisModule_RegisterClusterMessageReceiver)(RedisModuleCtx *ctx, uint8_t type, RedisModuleClusterMessageReceiver callback); int REDISMODULE_API_FUNC(RedisModule_SendClusterMessage)(RedisModuleCtx *ctx, char *target_id, uint8_t type, unsigned char *msg, uint32_t len); int REDISMODULE_API_FUNC(RedisModule_GetClusterNodeInfo)(RedisModuleCtx *ctx, const char *id, char *ip, char *master_id, int *port, int *flags); char **REDISMODULE_API_FUNC(RedisModule_GetClusterNodesList)(RedisModuleCtx *ctx, size_t *numnodes); void REDISMODULE_API_FUNC(RedisModule_FreeClusterNodesList)(char **ids); RedisModuleTimerID REDISMODULE_API_FUNC(RedisModule_CreateTimer)(RedisModuleCtx *ctx, mstime_t period, RedisModuleTimerProc callback, void *data); int REDISMODULE_API_FUNC(RedisModule_StopTimer)(RedisModuleCtx *ctx, RedisModuleTimerID id, void **data); int REDISMODULE_API_FUNC(RedisModule_GetTimerInfo)(RedisModuleCtx *ctx, RedisModuleTimerID id, uint64_t *remaining, void **data); const char *REDISMODULE_API_FUNC(RedisModule_GetMyClusterID)(void); size_t REDISMODULE_API_FUNC(RedisModule_GetClusterSize)(void); void REDISMODULE_API_FUNC(RedisModule_GetRandomBytes)(unsigned char *dst, size_t len); void REDISMODULE_API_FUNC(RedisModule_GetRandomHexChars)(char *dst, size_t len); void REDISMODULE_API_FUNC(RedisModule_SetDisconnectCallback)(RedisModuleBlockedClient *bc, RedisModuleDisconnectFunc callback); void REDISMODULE_API_FUNC(RedisModule_SetClusterFlags)(RedisModuleCtx *ctx, uint64_t flags); #endif /* This is included inline inside each Redis module. */ static int RedisModule_Init(RedisModuleCtx *ctx, const char *name, int ver, int apiver) __attribute__((unused)); static int RedisModule_Init(RedisModuleCtx *ctx, const char *name, int ver, int apiver) { void *getapifuncptr = ((void**)ctx)[0]; RedisModule_GetApi = (int (*)(const char *, void *)) (unsigned long)getapifuncptr; REDISMODULE_GET_API(Alloc); REDISMODULE_GET_API(Calloc); REDISMODULE_GET_API(Free); REDISMODULE_GET_API(Realloc); REDISMODULE_GET_API(Strdup); REDISMODULE_GET_API(CreateCommand); REDISMODULE_GET_API(SetModuleAttribs); REDISMODULE_GET_API(IsModuleNameBusy); REDISMODULE_GET_API(WrongArity); REDISMODULE_GET_API(ReplyWithLongLong); REDISMODULE_GET_API(ReplyWithError); REDISMODULE_GET_API(ReplyWithSimpleString); REDISMODULE_GET_API(ReplyWithArray); REDISMODULE_GET_API(ReplySetArrayLength); REDISMODULE_GET_API(ReplyWithStringBuffer); REDISMODULE_GET_API(ReplyWithString); REDISMODULE_GET_API(ReplyWithNull); REDISMODULE_GET_API(ReplyWithCallReply); REDISMODULE_GET_API(ReplyWithDouble); REDISMODULE_GET_API(ReplySetArrayLength); REDISMODULE_GET_API(GetSelectedDb); REDISMODULE_GET_API(SelectDb); REDISMODULE_GET_API(OpenKey); REDISMODULE_GET_API(CloseKey); REDISMODULE_GET_API(KeyType); REDISMODULE_GET_API(ValueLength); REDISMODULE_GET_API(ListPush); REDISMODULE_GET_API(ListPop); REDISMODULE_GET_API(StringToLongLong); REDISMODULE_GET_API(StringToDouble); REDISMODULE_GET_API(Call); REDISMODULE_GET_API(CallReplyProto); REDISMODULE_GET_API(FreeCallReply); REDISMODULE_GET_API(CallReplyInteger); REDISMODULE_GET_API(CallReplyType); REDISMODULE_GET_API(CallReplyLength); REDISMODULE_GET_API(CallReplyArrayElement); REDISMODULE_GET_API(CallReplyStringPtr); REDISMODULE_GET_API(CreateStringFromCallReply); REDISMODULE_GET_API(CreateString); REDISMODULE_GET_API(CreateStringFromLongLong); REDISMODULE_GET_API(CreateStringFromString); REDISMODULE_GET_API(CreateStringPrintf); REDISMODULE_GET_API(FreeString); REDISMODULE_GET_API(StringPtrLen); REDISMODULE_GET_API(AutoMemory); REDISMODULE_GET_API(Replicate); REDISMODULE_GET_API(ReplicateVerbatim); REDISMODULE_GET_API(DeleteKey); REDISMODULE_GET_API(UnlinkKey); REDISMODULE_GET_API(StringSet); REDISMODULE_GET_API(StringDMA); REDISMODULE_GET_API(StringTruncate); REDISMODULE_GET_API(GetExpire); REDISMODULE_GET_API(SetExpire); REDISMODULE_GET_API(ZsetAdd); REDISMODULE_GET_API(ZsetIncrby); REDISMODULE_GET_API(ZsetScore); REDISMODULE_GET_API(ZsetRem); REDISMODULE_GET_API(ZsetRangeStop); REDISMODULE_GET_API(ZsetFirstInScoreRange); REDISMODULE_GET_API(ZsetLastInScoreRange); REDISMODULE_GET_API(ZsetFirstInLexRange); REDISMODULE_GET_API(ZsetLastInLexRange); REDISMODULE_GET_API(ZsetRangeCurrentElement); REDISMODULE_GET_API(ZsetRangeNext); REDISMODULE_GET_API(ZsetRangePrev); REDISMODULE_GET_API(ZsetRangeEndReached); REDISMODULE_GET_API(HashSet); REDISMODULE_GET_API(HashGet); REDISMODULE_GET_API(IsKeysPositionRequest); REDISMODULE_GET_API(KeyAtPos); REDISMODULE_GET_API(GetClientId); REDISMODULE_GET_API(GetContextFlags); REDISMODULE_GET_API(PoolAlloc); REDISMODULE_GET_API(CreateDataType); REDISMODULE_GET_API(ModuleTypeSetValue); REDISMODULE_GET_API(ModuleTypeGetType); REDISMODULE_GET_API(ModuleTypeGetValue); REDISMODULE_GET_API(SaveUnsigned); REDISMODULE_GET_API(LoadUnsigned); REDISMODULE_GET_API(SaveSigned); REDISMODULE_GET_API(LoadSigned); REDISMODULE_GET_API(SaveString); REDISMODULE_GET_API(SaveStringBuffer); REDISMODULE_GET_API(LoadString); REDISMODULE_GET_API(LoadStringBuffer); REDISMODULE_GET_API(SaveDouble); REDISMODULE_GET_API(LoadDouble); REDISMODULE_GET_API(SaveFloat); REDISMODULE_GET_API(LoadFloat); REDISMODULE_GET_API(EmitAOF); REDISMODULE_GET_API(Log); REDISMODULE_GET_API(LogIOError); REDISMODULE_GET_API(StringAppendBuffer); REDISMODULE_GET_API(RetainString); REDISMODULE_GET_API(StringCompare); REDISMODULE_GET_API(GetContextFromIO); REDISMODULE_GET_API(Milliseconds); REDISMODULE_GET_API(DigestAddStringBuffer); REDISMODULE_GET_API(DigestAddLongLong); REDISMODULE_GET_API(DigestEndSequence); REDISMODULE_GET_API(CreateDict); REDISMODULE_GET_API(FreeDict); REDISMODULE_GET_API(DictSize); REDISMODULE_GET_API(DictSetC); REDISMODULE_GET_API(DictReplaceC); REDISMODULE_GET_API(DictSet); REDISMODULE_GET_API(DictReplace); REDISMODULE_GET_API(DictGetC); REDISMODULE_GET_API(DictGet); REDISMODULE_GET_API(DictDelC); REDISMODULE_GET_API(DictDel); REDISMODULE_GET_API(DictIteratorStartC); REDISMODULE_GET_API(DictIteratorStart); REDISMODULE_GET_API(DictIteratorStop); REDISMODULE_GET_API(DictIteratorReseekC); REDISMODULE_GET_API(DictIteratorReseek); REDISMODULE_GET_API(DictNextC); REDISMODULE_GET_API(DictPrevC); REDISMODULE_GET_API(DictNext); REDISMODULE_GET_API(DictPrev); REDISMODULE_GET_API(DictCompare); REDISMODULE_GET_API(DictCompareC); #ifdef REDISMODULE_EXPERIMENTAL_API REDISMODULE_GET_API(GetThreadSafeContext); REDISMODULE_GET_API(FreeThreadSafeContext); REDISMODULE_GET_API(ThreadSafeContextLock); REDISMODULE_GET_API(ThreadSafeContextUnlock); REDISMODULE_GET_API(BlockClient); REDISMODULE_GET_API(UnblockClient); REDISMODULE_GET_API(IsBlockedReplyRequest); REDISMODULE_GET_API(IsBlockedTimeoutRequest); REDISMODULE_GET_API(GetBlockedClientPrivateData); REDISMODULE_GET_API(GetBlockedClientHandle); REDISMODULE_GET_API(AbortBlock); REDISMODULE_GET_API(SetDisconnectCallback); REDISMODULE_GET_API(SubscribeToKeyspaceEvents); REDISMODULE_GET_API(BlockedClientDisconnected); REDISMODULE_GET_API(RegisterClusterMessageReceiver); REDISMODULE_GET_API(SendClusterMessage); REDISMODULE_GET_API(GetClusterNodeInfo); REDISMODULE_GET_API(GetClusterNodesList); REDISMODULE_GET_API(FreeClusterNodesList); REDISMODULE_GET_API(CreateTimer); REDISMODULE_GET_API(StopTimer); REDISMODULE_GET_API(GetTimerInfo); REDISMODULE_GET_API(GetMyClusterID); REDISMODULE_GET_API(GetClusterSize); REDISMODULE_GET_API(GetRandomBytes); REDISMODULE_GET_API(GetRandomHexChars); REDISMODULE_GET_API(SetClusterFlags); #endif if (RedisModule_IsModuleNameBusy && RedisModule_IsModuleNameBusy(name)) return REDISMODULE_ERR; RedisModule_SetModuleAttribs(ctx,name,ver,apiver); return REDISMODULE_OK; } #else /* Things only defined for the modules core, not exported to modules * including this file. */ #define RedisModuleString robj #endif /* REDISMODULE_CORE */ #endif /* REDISMOUDLE_H */
- 实现入口函数 RedisModule_OnLoad 、实现自己的自定义函数 xxxx_createmand (module.c)
#include "redismodule.h" #include <stdlib.h> // 你的业务代码 int MyRand_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) { RedisModule_ReplyWithLongLong(ctx,rand()); return REDISMODULE_OK; } // redis 加载 module 的入口函数 int RedisModule_OnLoad(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) { //给你的module定义 名称和版本信息 if (RedisModule_Init(ctx,"ctrip",1,REDISMODULE_APIVER_1) == REDISMODULE_ERR) return REDISMODULE_ERR; if (RedisModule_CreateCommand(ctx,"ctrip.rand",MyRand_RedisCommand,"",1,1,1) == REDISMODULE_ERR) return REDISMODULE_ERR; return REDISMODULE_OK; }
- 编写编译文件Makefile
DEBUGFLAGS = -g -ggdb -O2 ifeq ($(DEBUG), 1) DEBUGFLAGS = -g -ggdb -O0 endif # find the OS uname_S := $(shell sh -c 'uname -s 2>/dev/null || echo not') CFLAGS = -Wall -Wno-unused-function $(DEBUGFLAGS) -fPIC -std=gnu99 -D_GNU_SOURCE CC:=$(shell sh -c 'type $(CC) >/dev/null 2>/dev/null && echo $(CC) || echo gcc') # Compile flags for linux / osx ifeq ($(uname_S),Linux) SHOBJ_CFLAGS ?= -fno-common -g -ggdb SHOBJ_LDFLAGS ?= -shared -Bsymbolic -Bsymbolic-functions else CFLAGS += -mmacosx-version-min=10.6 SHOBJ_CFLAGS ?= -dynamic -fno-common -g -ggdb SHOBJ_LDFLAGS ?= -dylib -exported_symbol _RedisModule_OnLoad -macosx_version_min 10.6 endif SOURCEDIR=$(shell pwd -P) CC_SOURCES = $(wildcard $(SOURCEDIR)/*.c) $(wildcard $(SOURCEDIR)/dep/*.c) CC_OBJECTS = $(patsubst $(SOURCEDIR)/%.c, $(SOURCEDIR)/%.o, $(CC_SOURCES)) all: ctrip.so ctrip.so: $(CC_OBJECTS) $(LD) -o $@ $(CC_OBJECTS) $(SHOBJ_LDFLAGS) -lc clean: rm -rvf *.xo *.so *.o *.a
- 执行 rz 命令将 redismodule.h 、 module.c 、 Makefile 文件拷贝到redis文件夹下新建的module文件夹下,然后使用 make 编译一下,然后生成 ctrip.so 动态库
[root@localhost redis]# mkdir module [root@localhost redis]# cd module/ [root@localhost module]# rz [root@localhost module]# ls Makefile module.c redismodule.h [root@localhost module]# make cc -Wall -Wno-unused-function -g -ggdb -O2 -fPIC -std=gnu99 -D_GNU_SOURCE -c -o /data/redis/module/module.o /data/redis/module/module.c ld -o ctrip.so /data/redis/module/module.o -shared -Bsymbolic -Bsymbolic-functions -lc [root@localhost module]# ls ctrip.so Makefile module.c module.o redismodule.h [root@localhost module]# pwd /data/redis/module
- redis启动的时候加载module
./redis-server ./redis.conf --loadmodule ./module/ctrip.so
- 客户端使用
[root@localhost redis]# ./redis-cli 127.0.0.1:6379> ctrip.rand (integer) 1445136292 127.0.0.1:6379> ctrip.rand (integer) 475099848 127.0.0.1:6379> ctrip.rand (integer) 2031241573
- 其他命令
127.0.0.1:6379> module list //查看module命令 1) 1) "name" 2) "ctrip" 3) "ver" 4) (integer) 1 127.0.0.1:6379> module unload ctrip //卸载module OK 127.0.0.1:6379> module load /data/redis/ctrip.so //加载module (error) ERR Error loading the extension. Please check the server logs. 127.0.0.1:6379> module load /data/redis/module/ctrip.so OK
21.3、rediSql的安装和使用
官方地址:https://github.com/RedBeardLab/rediSQL
下载v0.7.1版本:https://github.com/RedBeardLab/rediSQL/releases/download/v0.7.1/rediSQL_0.7.1.so
将文件拷贝到文件夹并加载
127.0.0.1:6379> module load /data/redis/rediSQL_0.7.1.so OK
客户端执行语句
127.0.0.1:6379> REDISQL.CREATE_DB DB //创建数据库 OK 127.0.0.1:6379> REDISQL.EXEC DB "CREATE TABLE person(id int, username text);" //创建person表 1) DONE 2) (integer) 0 127.0.0.1:6379> REDISQL.EXEC DB "INSERT INTO person VALUES(1,'jack');" //插入person表数据 1) DONE 2) (integer) 1 127.0.0.1:6379> REDISQL.EXEC DB "INSERT INTO person VALUES(1,'mary');" 1) DONE 2) (integer) 1 127.0.0.1:6379> REDISQL.EXEC DB "select * from person;" //查询person表数据 1) 1) (integer) 1 2) "jack" 2) 1) (integer) 1 2) "mary"
22、【监控】使用es+kibana+metricsbeat对redis进行监控
22.1、如何监控redis
- info命令https://redis.io/commands/info
可以通过info命令查看
127.0.0.1:6379> info # Server redis_version:5.0.3 redis_git_sha1:00000000 redis_git_dirty:0 redis_build_id:7e97aa5c23979213 redis_mode:standalone os:Linux 3.10.0-957.el7.x86_64 x86_64 arch_bits:64 multiplexing_api:epoll atomicvar_api:atomic-builtin gcc_version:4.8.5 process_id:19834 run_id:d50dc9ef71d45e3ee56bf5bd20d6a55e539fd476 tcp_port:6379 uptime_in_seconds:1546 uptime_in_days:0 hz:10 configured_hz:10 lru_clock:5845738 executable:/data/redis/./redis-server config_file:/data/redis/./redis.conf # Clients connected_clients:1 client_recent_max_input_buffer:2 client_recent_max_output_buffer:0 blocked_clients:0 # Memory used_memory:913320 used_memory_human:891.91K used_memory_rss:3870720 used_memory_rss_human:3.69M used_memory_peak:913320 used_memory_peak_human:891.91K used_memory_peak_perc:100.11% used_memory_overhead:910838 used_memory_startup:861072 used_memory_dataset:2482 used_memory_dataset_perc:4.75% allocator_allocated:879528 allocator_active:3832832 allocator_resident:3832832 total_system_memory:1907941376 total_system_memory_human:1.78G used_memory_lua:37888 used_memory_lua_human:37.00K used_memory_scripts:0 used_memory_scripts_human:0B number_of_cached_scripts:0 maxmemory:104857600 maxmemory_human:100.00M maxmemory_policy:allkeys-lru allocator_frag_ratio:4.36 allocator_frag_bytes:2953304 allocator_rss_ratio:1.00 allocator_rss_bytes:0 rss_overhead_ratio:1.01 rss_overhead_bytes:37888 mem_fragmentation_ratio:4.40 mem_fragmentation_bytes:2991192 mem_not_counted_for_evict:0 mem_replication_backlog:0 mem_clients_slaves:0 mem_clients_normal:49694 mem_aof_buffer:0 mem_allocator:libc active_defrag_running:0 lazyfree_pending_objects:0 # Persistence loading:0 rdb_changes_since_last_save:0 rdb_bgsave_in_progress:0 rdb_last_save_time:1549349088 rdb_last_bgsave_status:ok rdb_last_bgsave_time_sec:0 rdb_current_bgsave_time_sec:-1 rdb_last_cow_size:557056 aof_enabled:0 aof_rewrite_in_progress:0 aof_rewrite_scheduled:0 aof_last_rewrite_time_sec:-1 aof_current_rewrite_time_sec:-1 aof_last_bgrewrite_status:ok aof_last_write_status:ok aof_last_cow_size:0 # Stats total_connections_received:3 total_commands_processed:17 instantaneous_ops_per_sec:0 total_net_input_bytes:772 total_net_output_bytes:34922 instantaneous_input_kbps:0.00 instantaneous_output_kbps:0.00 rejected_connections:0 sync_full:0 sync_partial_ok:0 sync_partial_err:0 expired_keys:0 expired_stale_perc:0.00 expired_time_cap_reached_count:0 evicted_keys:0 keyspace_hits:0 keyspace_misses:0 pubsub_channels:0 pubsub_patterns:0 latest_fork_usec:172 migrate_cached_sockets:0 slave_expires_tracked_keys:0 active_defrag_hits:0 active_defrag_misses:0 active_defrag_key_hits:0 active_defrag_key_misses:0 # Replication role:master connected_slaves:0 master_replid:343fc546128e3dc41ecb5f178fae6d5e02e390ea master_replid2:0000000000000000000000000000000000000000 master_repl_offset:0 second_repl_offset:-1 repl_backlog_active:0 repl_backlog_size:1048576 repl_backlog_first_byte_offset:0 repl_backlog_histlen:0 # CPU used_cpu_sys:1.949254 used_cpu_user:1.224226 used_cpu_sys_children:0.003597 used_cpu_user_children:0.000000 # Cluster cluster_enabled:0 # Keyspace db0:keys=1,expires=0,avg_ttl=0
server
: General information about the Redis serverclients
: Client connections sectionmemory
: Memory consumption related informationpersistence
: RDB and AOF related informationstats
: General statisticsreplication
: Master/replica replication informationcpu
: CPU consumption statisticscommandstats
: Redis command statisticscluster
: Redis Cluster sectionkeyspace
: Database related statistics
It can also take the following values:
all
: Return all sectionsdefault
: Return only the default set of sections
- monitor命令https://redis.io/commands/monitor
可以随时查看多个客户端进行处理的命令语句
//客户端1 127.0.0.1:6379> monitor OK //客户端2 [root@localhost redis]# ./redis-cli //客户端1 1549349998.266239 [0 127.0.0.1:46604] "COMMAND" 127.0.0.1:6379> keys * 1) "DB" //客户端2 1549350008.437912 [0 127.0.0.1:46604] "keys" "*"
- ./redis-cli --stat命令
[root@localhost redis]# ./redis-cli --stat ------- data ------ --------------------- load -------------------- - child - 键 内存 客户端 阻塞数 请求数 连接数 keys mem clients blocked requests connections 1 909.06K 2 0 21 (+0) 5 1 909.06K 2 0 22 (+1) 5 1 909.06K 2 0 23 (+1) 5 1 909.06K 2 0 24 (+1) 5 1 909.06K 2 0 25 (+1) 5 1 909.06K 2 0 26 (+1) 5 1 909.06K 2 0 27 (+1) 5 1 909.06K 2 0 28 (+1) 5
22.2、专业的elasticsearch + kibana + metricbeat 对redis进行监控
- 搭建
docker 安装 es +kibana
metric 安装 https://www.elastic.co/downloadsmetricbeat elasticsearch kibana 采集器 数据分析,搜索 luncene web查看工具
- 通过docker安装es +kibana+redis
docker-es(5.6.14):https://hub.docker.com/_/elasticsearch安装
docker pull docker.elastic.co/elasticsearch/elasticsearch:5.6.14
docker-kibana(5.6.14):https://hub.docker.com/_/kibana安装
docker pull docker.elastic.co/kibana/kibana:5.6.14
docker-redis:
docker run --name some-redis -p 6379:6379 -d redis
- 查看安装的docker镜像
[root@localhost ~]# docker images REPOSITORY TAG IMAGE ID CREATED SIZE docker.io/redis latest 82629e941a38 13 days ago 95 MB docker.elastic.co/kibana/kibana 5.6.14 b5d65e1bd763 7 weeks ago 659 MB docker.elastic.co/elasticsearch/elasticsearch 5.6.14 cbf18c3f8c43 7 weeks ago 663 MB
- 安装 metricbeat ,在redis文件夹下创建 elastic 文件夹,然后下载 Metricbeat 安装包
[root@localhost redis]# mkdir elastic [root@localhost redis]# cd elastic/ [root@localhost elastic]# wget https://artifacts.elastic.co/downloads/beats/metricbeat/metricbeat-5.6.14-linux-x86_64.tar.gz
- 编写 docker-compose.yml 文件,或者使用 rz 命令上传
version: '3.0' services: elasticsearch: image: elasticsearch:5.6.14 ports: - 9200:9200 - 9300:9300 kibana: image: kibana:5.6.14 ports: - 5601:5601 links: - elasticsearch
- 安装 docker-compose 工具
官方地址:https://github.com/docker/compose/releases
//安装 sudo curl -L https://github.com/docker/compose/releases/download/1.24.0-rc1/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose //添加执行权限 sudo chmod +x /usr/local/bin/docker-compose //测试安装结果 docker-compose
- 编译(会根据 docker-compose.yml 配置文件进行自动下载)
docker-compose up --build
- 查看docker镜像
[root@localhost ~]# docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 0ea66ecacfa6 kibana:5.6.14 "/docker-entrypoin..." 8 minutes ago Up 8 minutes 0.0.0.0:5601->5601/tcp elastic_kibana_1 a6e1ea5adadf elasticsearch:5.6.14 "/docker-entrypoin..." 8 minutes ago Up 8 minutes 0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp elastic_elasticsearch_1
可以看到kibana与elasticasearch都已安装完成
- 查看kibana,端口5601
- 查看elasticsearch,端口9200、9300
- 安装与启动 metricbeat
先进行解压
//解压 [root@localhost elastic]# tar -xzvf metricbeat-5.6.14-linux-x86_64.tar.gz //重命名解压文件 [root@localhost elastic]# mv metricbeat-5.6.14-linux-x86_64 metricbeat [root@localhost elastic]# cd metricbeat/ //删除原有metricbeat.yml 文件并重新生成 [root@localhost metricbeat]# rm -rf metricbeat.yml [root@localhost metricbeat]# cp metricbeat.full.yml metricbeat.yml
修改 metricbeat.yml 配置文件
//Redis Module - module: redis metricsets: ["info", "keyspace"] enabled: true #period: 10s # Redis hosts hosts: ["0.0.0.0:6379"] //template # Set to false to disable template loading. template.enabled: true # Template name. By default the template name is metricbeat. template.name: "metricbeat" # Path to template file template.path: "${path.config}/metricbeat.template.json" # Overwrite existing template template.overwrite: false //dashboard dashboards.enabled:true
启动Metricbeat
./metricbeat -e -c metricbeat.yml
- 配置Kibana
我们要配置kibana的索引,索引在metricbeat中的 metricbeat.yml 文件中的 template.name 的值metricbea,注意配置的时候要以*号结尾。时间过滤我们选择时间戳
然后我们可以在DisCover中查看日志信息
我们可以通过dashboard来查看很多仪表盘信息
我们重点关注一下dashboard中的redis
我们也可以自己起创建模板来采集信息
23、【Cluster】读写分离架构搭建和twenproxy分布式缓存搭建介绍
23.1、初级的集群(多机部署)
23.1.1、redis的 master - replica 模式
缓存单机redis的读写压力。
- master: 负责写 和 少量的读
- slave: 负责读
解决的问题
- 一定能力的高可用
- 分摊读写压力
23.1.2、搭建
- slaveof 命令实现(重启之后将会取消)
写入库IP:192.168.43.62
读取库IP:192.168.132.128
在读取库上进行slaveof操作
slaveof 192.168.43.62 6379
这时候在写入库写入,即可在读取库读取
- replicaof 命令实现(重启之后不会取消,配置文件)
写入库IP:192.168.43.62
读取库IP:192.168.132.128
修改读取库配置文件 redis.conf
# replicaof <masterip> <masterport> replicaof 192.168.43.62 6379
23.1.3、SDK实现
- write
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.43.62:6379,192.168.132.128:6379"); var db = redis.GetDatabase(0); for (int i = 0; i < int.MaxValue; i++) { try { db.StringSet(i.ToString(), ""); Console.WriteLine($"{i}处理结束"); } catch (Exception ex) { Console.WriteLine(ex.Message); Thread.Sleep(10); } } Console.ReadKey(); } }
主服务挂掉会抛出异常
- read
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.43.62:6379,192.168.132.128:6379"); var db = redis.GetDatabase(0); for (int i = 0; i < int.MaxValue; i++) { try { db.StringGet(i.ToString()); Console.WriteLine($"{i}处理结束"); } catch (Exception ex) { Console.WriteLine(ex.Message); Thread.Sleep(10); } } Console.ReadKey(); } }
主服务挂掉一个依然可以读
23.2、redis + twenproxy 模式(负载均衡模式)
twenproxy官方地址:https://github.com/twitter/twemproxy (相当于web nginx)
在主服务器上进行下载安装
//下载 [root@localhost data]# wget https://doc-0o-08-docs.googleusercontent.com/docs/securesc/ldrgc4v8l6s4mmt863tsvf16k3mhbph4/uqjpged7j8k0kucos05i7pvj52n3fv21/1549418400000/15183709450983481674/04994642584830366907/0B6pVMMV5F5dfb1YwcThnaVZXbjg?e=download //解压 [root@localhost data]# tar -xzvf nutcracker-0.4.1.tar.gz //重命名 [root@localhost data]# mv nutcracker-0.4.1 twemproxy [root@localhost data]# cd twemproxy/
编译,编译到/data/proxy文件夹下
[root@localhost twemproxy]# ./configure -prefix=/data/proxy
执行make进行编译
[root@localhost twemproxy]# make & make install
编译完成之后我们可以到 /data/proxy/sbin/ 下面的 nutcracker ,我们可以看一下 nutcracker 的帮助类
[root@localhost sbin]# ./nutcracker --help This is nutcracker-0.4.1 Usage: nutcracker [-?hVdDt] [-v verbosity level] [-o output file] [-c conf file] [-s stats port] [-a stats addr] [-i stats interval] [-p pid file] [-m mbuf size] Options: -h, --help : this help -V, --version : show version and exit -t, --test-conf : test configuration for syntax errors and exit -d, --daemonize : run as a daemon -D, --describe-stats : print stats description and exit -v, --verbose=N : set logging level (default: 5, min: 0, max: 11) -o, --output=S : set logging file (default: stderr) -c, --conf-file=S : set configuration file (default: conf/nutcracker.yml) -s, --stats-port=N : set stats monitoring port (default: 22222) -a, --stats-addr=S : set stats monitoring ip (default: 0.0.0.0) -i, --stats-interval=N : set stats aggregation interval in msec (default: 30000 msec) -p, --pid-file=S : set pid file (default: off) -m, --mbuf-size=N : set size of mbuf chunk in bytes (default: 16384 bytes)
然后我们看一下配置文件模板,在 /data/twemproxy/conf/ 文件夹下面的 nutcracker.yml 文件中
alpha: listen: 127.0.0.1:22121 hash: fnv1a_64 distribution: ketama auto_eject_hosts: true redis: true server_retry_timeout: 2000 server_failure_limit: 1 servers: - 127.0.0.1:6379:1 beta: listen: 127.0.0.1:22122 hash: fnv1a_64 hash_tag: "{}" distribution: ketama auto_eject_hosts: false timeout: 400 redis: true servers: - 127.0.0.1:6380:1 server1 - 127.0.0.1:6381:1 server2 - 127.0.0.1:6382:1 server3 - 127.0.0.1:6383:1 server4 gamma: listen: 127.0.0.1:22123 hash: fnv1a_64 distribution: ketama timeout: 400 backlog: 1024 preconnect: true auto_eject_hosts: true server_retry_timeout: 2000 server_failure_limit: 3 servers: - 127.0.0.1:11212:1 - 127.0.0.1:11213:1 delta: listen: 127.0.0.1:22124 hash: fnv1a_64 distribution: ketama timeout: 100 auto_eject_hosts: true server_retry_timeout: 2000 server_failure_limit: 1 servers: - 127.0.0.1:11214:1 - 127.0.0.1:11215:1 - 127.0.0.1:11216:1 - 127.0.0.1:11217:1 - 127.0.0.1:11218:1 - 127.0.0.1:11219:1 - 127.0.0.1:11220:1 - 127.0.0.1:11221:1 - 127.0.0.1:11222:1 - 127.0.0.1:11223:1 omega: listen: /tmp/gamma hash: hsieh distribution: ketama auto_eject_hosts: false servers: - 127.0.0.1:11214:100000 - 127.0.0.1:11215:1
然后我们在 /data/proxy/sbin/ 下面参照 nutcracker.yml 文件编写自定义配置文件 kp.yml
lpha: listen: 192.168.132.130:22121 hash: fnv1a_64 distribution: ketama auto_eject_hosts: true redis: true server_retry_timeout: 2000 server_failure_limit: 1 servers: - 192.168.132.130:6379:1 - 192.168.132.129:6379:2
然后启动(-d后台启动,-c配置文件)
[root@localhost sbin]# ./nutcracker -d -c kp.yml [root@localhost sbin]# netstat -tlnp Active Internet connections (only servers) Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp 0 0 192.168.132.130:22121 0.0.0.0:* LISTEN 61912/./nutcracker tcp 0 0 0.0.0.0:22222 0.0.0.0:* LISTEN 61912/./nutcracker tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 1/systemd tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN 7196/X tcp 0 0 192.168.122.1:53 0.0.0.0:* LISTEN 7643/dnsmasq tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 6974/sshd tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 6976/cupsd tcp6 0 0 :::111 :::* LISTEN 1/systemd tcp6 0 0 :::6000 :::* LISTEN 7196/X tcp6 0 0 :::22 :::* LISTEN 6974/sshd tcp6 0 0 ::1:631 :::* LISTEN 6976/cupsd
然后分别启动两台redis(1192.168.132.130、192.168.132.129),进行测试
[root@bogon redis]# ./redis-cli -h 192.168.132.130 -p 22121 192.168.132.130:22121> set username jack OK 192.168.132.130:22121> set password 12345 OK 192.168.132.130:22121> set email 786744873@qq.com OK
效果
23.3、SDK实现
class Program { static void Main(string[] args) { var conf = new ConfigurationOptions() { Proxy = Proxy.Twemproxy }; conf.EndPoints.Add("192.168.132.130:22121"); //proxy 服务器 ConnectionMultiplexer redis = ConnectionMultiplexer.Connect(conf); var db = redis.GetDatabase(0); for (int i = 0; i < int.MaxValue; i++) { try { var info = db.StringSet(i.ToString(), i.ToString()); Console.WriteLine($"{i} {info}处理结束"); Thread.Sleep(100); } catch (Exception ex) { Console.WriteLine(ex.Message); Thread.Sleep(10); } } Console.ReadKey(); } }
效果
24、【Cluster】搭建Redis的高可用模式sentinel介绍和搭建sdk实战
24.1、sentinel(哨兵机制)
master-slave 模式下master挂掉的问题解决,master 挂掉了,我希望这个 master -slave 模式还可以读写。所以引入议会机制 master - slave 的高可用问题,让这个机构去投票选举出一个slave 作为 master。
流程:
- 如果master挂掉了
-
当一般以上的sentinel(观察员)都认为master挂掉了。那么(观察员)就要推选出一个 “正组长”, 由 “正组长” 根据 slave的优先级 选举出一个最合适的 slave 作为 master
- sentinel让 其他slave 就会自动与master进行同步,作为新的master 的slave
-
挂掉的master 继续 受到观察员的监视。。。当老的master重新启动,将作为新的master的slave。
24.2、搭建
主:192.168.132.129:6379
从:192.168.132.130:6379
哨兵:192.168.132.131
- 现将主从建立 replicaof 主从关系,然后分别启动
- 在哨兵机上面的 /data/ 文件夹下创建 sentinelnel 文件夹,并在 sentinelnel 文件夹下创建三个哨兵文件夹
[root@localhost data]# ls redis redis-5.0.3.tar.gz [root@localhost data]# mkdir sentinelnel [root@localhost data]# cd sentinelnel/ [root@localhost sentinelnel]# mkdir s1 [root@localhost sentinelnel]# mkdir s2 [root@localhost sentinelnel]# mkdir s3 [root@localhost sentinelnel]# ls s1 s2 s3
- 将 redis 文件夹下面的 sentinel.conf 与 redis/src 文件夹下面的分别拷贝到 /data/sentinelnel/s1/ 、 /data/sentinelnel/s2/ 、 /data/sentinelnel/s3/ 文件夹下
[root@localhost redis]# cp ./sentinel.conf ../sentinelnel/s1/ [root@localhost redis]# cp ./sentinel.conf ../sentinelnel/s2/ [root@localhost redis]# cp ./sentinel.conf ../sentinelnel/s3/ [root@localhost redis]# cd src [root@localhost src]# cp ./redis-sentinel ../../sentinelnel/s1/ [root@localhost src]# cp ./redis-sentinel ../../sentinelnel/s2/ [root@localhost src]# cp ./redis-sentinel ../../sentinelnel/s3/
- 分别修改s1、s2、s3下面的配置文件(默认端口号26379,所以我们设置s1:26379、s2:26380、s3:26381)
//s1=>sentinel.conf port 26379 sentinel monitor mymaster 192.168.132.129 6379 2 //有2个哨兵认为主节点下线了,才进行重新选举 //s2=>sentinel.conf port 26380 sentinel monitor mymaster 192.168.132.129 6379 2 //s3=>sentinel.conf port 26381 sentinel monitor mymaster 192.168.132.129 6379 2
- 分别使用命令启动三个哨兵
[root@localhost s1]# ./redis-sentinel ./sentinel.conf [root@localhost s2]# ./redis-sentinel ./sentinel.conf [root@localhost s3]# ./redis-sentinel ./sentinel.conf ... 72173:X 07 Feb 2019 10:09:26.046 # Sentinel ID is a4b0184b08224fccf8c9eb9d8073a6197bb15fcc 72173:X 07 Feb 2019 10:09:26.046 # +monitor master mymaster 192.168.132.129 6379 quorum 2 72173:X 07 Feb 2019 10:09:26.047 * +slave slave 192.168.132.130:6379 192.168.132.130 6379 @ mymaster 192.168.132.129 6379 72173:X 07 Feb 2019 10:09:26.883 * +sentinel sentinel bee674ea947117df4af66228229a6c565a3e051b 192.168.132.131 26379 @ mymaster 192.168.132.129 6379 //26379哨兵 72173:X 07 Feb 2019 10:09:26.996 * +sentinel sentinel 14998349ae4f22ea83e22a9f847db2385009ddba 192.168.132.131 26380 @ mymaster 192.168.132.129 6379 //26380哨兵
为什么哨兵机制可以检测到其他哨兵?
[root@localhost redis]# ./redis-cli 127.0.0.1:6379> pubsub channels 1) "__sentinel__:hello"
由此我们可以看到在主redis中建立了sentinel通道,其他哨兵通过检测该通道来进行检测其他哨兵
- 测试成果
我们可以在主redis上使用 info 命令查看当前redis是的 role
//192.168.132.129 # Replication role:master //192.168.132.130 # Replication role:slave
我们可以将192.168.132.129上的redis服务暂停掉,哨兵30秒内会检测到变化,然后重新选举
[root@localhost s1]# ./redis-sentinel ./sentinel.conf 71856:X 07 Feb 2019 10:00:43.022 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo 71856:X 07 Feb 2019 10:00:43.022 # Redis version=5.0.3, bits=64, commit=00000000, modified=0, pid=71856, just started 71856:X 07 Feb 2019 10:00:43.022 # Configuration loaded 71856:X 07 Feb 2019 10:00:43.023 * Increased maximum number of open files to 10032 (it was originally set to 1024). _._ _.-``__ ''-._ _.-`` `. `_. ''-._ Redis 5.0.3 (00000000/0) 64 bit .-`` .-```. ```\/ _.,_ ''-._ ( ' , .-` | `, ) Running in sentinel mode |`-._`-...-` __...-.``-._|'` _.-'| Port: 26379 | `-._ `._ / _.-' | PID: 71856 `-._ `-._ `-./ _.-' _.-' |`-._`-._ `-.__.-' _.-'_.-'| | `-._`-._ _.-'_.-' | http://redis.io `-._ `-._`-.__.-'_.-' _.-' |`-._`-._ `-.__.-' _.-'_.-'| | `-._`-._ _.-'_.-' | `-._ `-._`-.__.-'_.-' _.-' `-._ `-.__.-' _.-' `-._ _.-' `-.__.-' 71856:X 07 Feb 2019 10:00:43.025 # WARNING: The TCP backlog setting of 511 cannot be enforced because /proc/sys/net/core/somaxconn is set to the lower value of 128. 71856:X 07 Feb 2019 10:00:43.026 # Sentinel ID is bee674ea947117df4af66228229a6c565a3e051b 71856:X 07 Feb 2019 10:00:43.026 # +monitor master mymaster 192.168.132.129 6379 quorum 2 71856:X 07 Feb 2019 10:00:43.028 * +slave slave 192.168.132.130:6379 192.168.132.130 6379 @ mymaster 192.168.132.129 6379 71856:X 07 Feb 2019 10:06:39.686 * +sentinel sentinel 14998349ae4f22ea83e22a9f847db2385009ddba 192.168.132.131 26380 @ mymaster 192.168.132.129 6379 71856:X 07 Feb 2019 10:09:28.105 * +sentinel sentinel a4b0184b08224fccf8c9eb9d8073a6197bb15fcc 192.168.132.131 26381 @ mymaster 192.168.132.129 6379 71856:X 07 Feb 2019 12:10:54.893 # +new-epoch 1 71856:X 07 Feb 2019 12:10:54.895 # +vote-for-leader a4b0184b08224fccf8c9eb9d8073a6197bb15fcc 1 71856:X 07 Feb 2019 12:10:54.904 # +sdown master mymaster 192.168.132.129 6379 71856:X 07 Feb 2019 12:10:54.962 # +odown master mymaster 192.168.132.129 6379 #quorum 3/2 71856:X 07 Feb 2019 12:10:54.962 # Next failover delay: I will not start a failover before Thu Feb 7 12:16:55 2019 71856:X 07 Feb 2019 12:10:55.704 # +config-update-from sentinel a4b0184b08224fccf8c9eb9d8073a6197bb15fcc 192.168.132.131 26381 @ mymaster 192.168.132.129 6379 71856:X 07 Feb 2019 12:10:55.704 # +switch-master mymaster 192.168.132.129 6379 192.168.132.130 6379 71856:X 07 Feb 2019 12:10:55.705 * +slave slave 192.168.132.129:6379 192.168.132.129 6379 @ mymaster 192.168.132.130 6379 71856:X 07 Feb 2019 12:11:25.779 # +sdown slave 192.168.132.129:6379 192.168.132.129 6379 @ mymaster 192.168.132.130 6379
我们通过 info 命令查看之前的从节点(192.168.132.130),发现已经变成了主节点
这时我们继续启动原来的暂停的主节点,发现已经变成了从节点
72173:X 07 Feb 2019 12:17:36.159 * +convert-to-slave slave 192.168.132.129:6379 192.168.132.129 6379 @ mymaster 192.168.132.130 6379
24.3、sdk演示
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.132.129:6379,192.168.132.130:6379"); var db = redis.GetDatabase(0); for (int i = 0; i < int.MaxValue; i++) { try { var info = db.StringSet(i.ToString(), i.ToString()); Console.WriteLine($"{i} {info}处理结束"); Thread.Sleep(100); } catch (Exception ex) { Console.WriteLine(ex.Message); Thread.Sleep(10); } } Console.ReadKey(); } }
25、【Cluster】cluster集群搭建和之前集群缺陷分析
25.1、目前我们知道的集群
- tweenproxy
解决了数据的均摊,但是单点压力容易压力过大。(容量的问题)
-> redis1
client -> proxy -> redis2
-> redis3 - master + slave + sentinel
虽然解决了高可用,实现master - slave角色的切换,但还没有解决数据均摊
25.2、cluster模型
- 高可用
sentinel 集成到 master 里面去。 - 数据均摊
16384个slot (一致性hash的算法),一个master分摊了 5600的slot。
25.3、集群搭建
官方文档:https://redis.io/topics/cluster-tutorial
本次搭建采用一台机器多个端口进行搭建,现预计端口开放如下
master | 6379 | 6380 | 6381 |
slave | 6382 | 6383 | 6384 |
我们先准备6台redis服务(将redis-serve、redis.conf拷贝下来),并修改配置文件如下
/cluster/6379/redis-server /cluster/6380/redis-server /cluster/6381/redis-server /cluster/6382/redis-server /cluster/6383/redis-server /cluster/6384/redis-server /cluster/6379/redis.conf bind 0.0.0.0 port 6379 protected-mode no cluster-enabled yes cluster-config-file nodes-6379.conf /cluster/6380/redis.conf bind 0.0.0.0 port 6380 protected-mode no cluster-enabled yes cluster-config-file nodes-6380.conf /cluster/6381/redis.conf bind 0.0.0.0 port 6381 protected-mode no cluster-enabled yes cluster-config-file nodes-6381.conf /cluster/6382/redis.conf bind 0.0.0.0 port 6382 protected-mode no cluster-enabled yes cluster-config-file nodes-6382.conf /cluster/6383/redis.conf bind 0.0.0.0 port 6383 protected-mode no cluster-enabled yes cluster-config-file nodes-6383.conf /cluster/6384/redis.conf bind 0.0.0.0 port 6384 protected-mode no cluster-enabled yes cluster-config-file nodes-6384.conf
然后使用 filezilla 工具将cluster文件夹拷贝到 /data 文件夹下
[root@localhost ~]# cd /data/ [root@localhost data]# ls cluster redis redis-5.0.3.tar.gz [root@localhost data]# ls cluster redis redis-5.0.3.tar.gz [root@localhost data]# cd cluster/ [root@localhost cluster]# ls 6379 6380 6381 6382 6383 6384 [root@localhost cluster]# cd 6379/ [root@localhost 6379]# ls redis.conf redis-server
然后修改权限并启动
[root@localhost 6379]# chmod 777 ./redis-server && ./redis-server ./redis.conf [root@localhost 6380]# chmod 777 ./redis-server && ./redis-server ./redis.conf [root@localhost 6381]# chmod 777 ./redis-server && ./redis-server ./redis.conf [root@localhost 6382]# chmod 777 ./redis-server && ./redis-server ./redis.conf [root@localhost 6383]# chmod 777 ./redis-server && ./redis-server ./redis.conf [root@localhost 6384]# chmod 777 ./redis-server && ./redis-server ./redis.conf
查看是否启动成功
[root@localhost ~]# netstat -tlnp Active Internet connections (only servers) Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp 0 0 0.0.0.0:6379 0.0.0.0:* LISTEN 85807/./redis-serve tcp 0 0 0.0.0.0:6380 0.0.0.0:* LISTEN 85846/./redis-serve tcp 0 0 0.0.0.0:6381 0.0.0.0:* LISTEN 85851/./redis-serve tcp 0 0 0.0.0.0:6382 0.0.0.0:* LISTEN 85864/./redis-serve tcp 0 0 0.0.0.0:6383 0.0.0.0:* LISTEN 85869/./redis-serve tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 1/systemd tcp 0 0 0.0.0.0:6384 0.0.0.0:* LISTEN 85875/./redis-serve
创建集群(cluster-replicas表示每个master后面跟一个slave)
./redis-cli --cluster create 192.168.132.129:6379 192.168.132.129:6380 192.168.132.129:6381 192.168.132.129:6382 192.168.132.129:6383 192.168.132.129:6384 --cluster-replicas 1
启动效果
[root@localhost redis]# ./redis-cli --cluster create 192.168.132.129:6379 192.168.132.129:6380 192.168.132.129:6381 192.168.132.129:6382 192.168.132.129:6383 192.168.132.129:6384 --cluster-replicas 1 >>> Performing hash slots allocation on 6 nodes... Master[0] -> Slots 0 - 5460 Master[1] -> Slots 5461 - 10922 Master[2] -> Slots 10923 - 16383 Adding replica 192.168.132.129:6382 to 192.168.132.129:6379 Adding replica 192.168.132.129:6383 to 192.168.132.129:6380 Adding replica 192.168.132.129:6384 to 192.168.132.129:6381 >>> Trying to optimize slaves allocation for anti-affinity [WARNING] Some slaves are in the same host as their master M: a9ef70b01534cae6bed200ea6ba3f0c73ff9d1f5 192.168.132.129:6379 //主 slots:[0-5460] (5461 slots) master M: a13cd2f8005286fd7bed260f1463b8cf5da1b91f 192.168.132.129:6380 //主 slots:[5461-10922] (5462 slots) master M: 56f79b7711110f2a6cc9bd52d5a218345ab23a77 192.168.132.129:6381 //主 slots:[10923-16383] (5461 slots) master S: e243acc761d12f1a0f1d5e05c28a2d2a6b7b9db9 192.168.132.129:6382 //从 replicates 56f79b7711110f2a6cc9bd52d5a218345ab23a77 S: dc13912412a5c8f38a7ee24234aad47aa269c593 192.168.132.129:6383 //从 replicates a9ef70b01534cae6bed200ea6ba3f0c73ff9d1f5 S: b408b915098d0a4725a6bce2ce375e5f9d690bdf 192.168.132.129:6384 //从 replicates a13cd2f8005286fd7bed260f1463b8cf5da1b91f Can I set the above configuration? (type 'yes' to accept): yes >>> Nodes configuration updated >>> Assign a different config epoch to each node >>> Sending CLUSTER MEET messages to join the cluster Waiting for the cluster to join ......... >>> Performing Cluster Check (using node 192.168.132.129:6379) M: a9ef70b01534cae6bed200ea6ba3f0c73ff9d1f5 192.168.132.129:6379 //主 slots:[0-5460] (5461 slots) master 1 additional replica(s) M: 56f79b7711110f2a6cc9bd52d5a218345ab23a77 192.168.132.129:6381 //主 slots:[10923-16383] (5461 slots) master 1 additional replica(s) S: b408b915098d0a4725a6bce2ce375e5f9d690bdf 192.168.132.129:6384 //从 slots: (0 slots) slave replicates a13cd2f8005286fd7bed260f1463b8cf5da1b91f S: dc13912412a5c8f38a7ee24234aad47aa269c593 192.168.132.129:6383 //从 slots: (0 slots) slave replicates a9ef70b01534cae6bed200ea6ba3f0c73ff9d1f5 M: a13cd2f8005286fd7bed260f1463b8cf5da1b91f 192.168.132.129:6380 //主 slots:[5461-10922] (5462 slots) master 1 additional replica(s) S: e243acc761d12f1a0f1d5e05c28a2d2a6b7b9db9 192.168.132.129:6382 //从 slots: (0 slots) slave replicates 56f79b7711110f2a6cc9bd52d5a218345ab23a77 [OK] All nodes agree about slots configuration. >>> Check for open slots... >>> Check slots coverage... [OK] All 16384 slots covered.
使用 cluster nodes 命令查看集群状态
[root@localhost redis]# ./redis-cli 127.0.0.1:6379> cluster nodes 56f79b7711110f2a6cc9bd52d5a218345ab23a77 192.168.132.129:6381@16381 master - 0 1549521186000 3 connected 10923-16383 a9ef70b01534cae6bed200ea6ba3f0c73ff9d1f5 192.168.132.129:6379@16379 myself,master - 0 1549521183000 1 connected 0-5460 b408b915098d0a4725a6bce2ce375e5f9d690bdf 192.168.132.129:6384@16384 slave a13cd2f8005286fd7bed260f1463b8cf5da1b91f 0 1549521187004 6 connected dc13912412a5c8f38a7ee24234aad47aa269c593 192.168.132.129:6383@16383 slave a9ef70b01534cae6bed200ea6ba3f0c73ff9d1f5 0 1549521184000 5 connected a13cd2f8005286fd7bed260f1463b8cf5da1b91f 192.168.132.129:6380@16380 master - 0 1549521185000 2 connected 5461-10922 e243acc761d12f1a0f1d5e05c28a2d2a6b7b9db9 192.168.132.129:6382@16382 slave 56f79b7711110f2a6cc9bd52d5a218345ab23a77 0 1549521185997 4 connected
高可用问题演示
现在我们将6379关闭,可以看到其他的redis全部监听到了6379端口关闭
85846:M 07 Feb 2019 14:39:51.059 * Marking node a9ef70b01534cae6bed200ea6ba3f0c73ff9d1f5 as failing (quorum reached). 85846:M 07 Feb 2019 14:39:51.060 # Cluster state changed: fail 85846:M 07 Feb 2019 14:39:51.968 # Failover auth granted to dc13912412a5c8f38a7ee24234aad47aa269c593 for epoch 7 85846:M 07 Feb 2019 14:39:52.010 # Cluster state changed: ok
这时候我们查看6383信息,可以看到该slave已经变成了master
这时候查看cluster信息,可以看到目前3个master,2个slave
127.0.0.1:6383> cluster nodes a13cd2f8005286fd7bed260f1463b8cf5da1b91f 192.168.132.129:6380@16380 master - 0 1549521863000 2 connected 5461-10922 dc13912412a5c8f38a7ee24234aad47aa269c593 192.168.132.129:6383@16383 myself,master - 0 1549521864000 7 connected 0-5460 e243acc761d12f1a0f1d5e05c28a2d2a6b7b9db9 192.168.132.129:6382@16382 slave 56f79b7711110f2a6cc9bd52d5a218345ab23a77 0 1549521865027 4 connected b408b915098d0a4725a6bce2ce375e5f9d690bdf 192.168.132.129:6384@16384 slave a13cd2f8005286fd7bed260f1463b8cf5da1b91f 0 1549521864021 6 connected a9ef70b01534cae6bed200ea6ba3f0c73ff9d1f5 192.168.132.129:6379@16379 master,fail - 1549521573625 1549521572519 1 disconnected 56f79b7711110f2a6cc9bd52d5a218345ab23a77 192.168.132.129:6381@16381 master - 0 1549521863013 3 connected 10923-16383
这时候我们重新启动6379,并查看查看cluster信息,发现已经恢复成slave
127.0.0.1:6383> cluster nodes a13cd2f8005286fd7bed260f1463b8cf5da1b91f 192.168.132.129:6380@16380 master - 0 1549521999113 2 connected 5461-10922 dc13912412a5c8f38a7ee24234aad47aa269c593 192.168.132.129:6383@16383 myself,master - 0 1549522000000 7 connected 0-5460 e243acc761d12f1a0f1d5e05c28a2d2a6b7b9db9 192.168.132.129:6382@16382 slave 56f79b7711110f2a6cc9bd52d5a218345ab23a77 0 1549521999000 4 connected b408b915098d0a4725a6bce2ce375e5f9d690bdf 192.168.132.129:6384@16384 slave a13cd2f8005286fd7bed260f1463b8cf5da1b91f 0 1549522001129 6 connected a9ef70b01534cae6bed200ea6ba3f0c73ff9d1f5 192.168.132.129:6379@16379 slave dc13912412a5c8f38a7ee24234aad47aa269c593 0 1549521997098 7 connected 56f79b7711110f2a6cc9bd52d5a218345ab23a77 192.168.132.129:6381@16381 master - 0 1549522000121 3 connected 10923-16383
数据均摊问题演示
以集群的方式连接服务6382,在这里我们连接master,方便清除数据库(使用-c参数),可以清晰的看到存储到了哪台服务器的哪个slot(槽位)
[root@localhost redis]# ./redis-cli -c -p 6380 127.0.0.1:6380> flushall OK 127.0.0.1:6380> set username jack -> Redirected to slot [14315] located at 192.168.132.129:6381 OK 192.168.132.129:6381> set password 12345 -> Redirected to slot [9540] located at 192.168.132.129:6380 OK 192.168.132.129:6380> set email 786744873@qq.com OK
25.4、SDK实现
class Program { static void Main(string[] args) { ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("192.168.132.129:6379,192.168.132.129:6380,192.168.132.129:6381,192.168.132.129:6382,192.168.132.129:6383,192.168.132.129:6384"); var db = redis.GetDatabase(0); for (int i = 0; i < int.MaxValue; i++) { try { var info = db.StringSet(i.ToString(), i.ToString()); Console.WriteLine($"{i} {info}处理结束"); Thread.Sleep(100); } catch (Exception ex) { Console.WriteLine(ex.Message); Thread.Sleep(10); } } Console.ReadKey(); } }
效果展示
节后语,坚持写完真的不容易,大年初一都在写。谢谢大家,新年快乐
-------------------------------------------
个性签名:独学而无友,则孤陋而寡闻。做一个灵魂有趣的人!
如果觉得这篇文章对你有小小的帮助的话,记得在右下角点个“推荐”哦,博主在此感谢!
万水千山总是情,打赏一分行不行,所以如果你心情还比较高兴,也是可以扫码打赏博主,哈哈哈(っ•̀ω•́)っ✎⁾⁾!
posted on 2019-02-07 15:11 一个大西瓜咚咚咚 阅读(6417) 评论(14) 编辑 收藏 举报