TensorFlow学习笔记之--[tf.clip_by_global_norm,tf.clip_by_value,tf.clip_by_norm等的区别]

以下这些函数可以用于解决梯度消失或梯度爆炸问题上。

tensorflow 中的clip_by_norm

optimizer = tf.train.AdamOptimizer(learning_rate, beta1=0.5)
grads = optimizer.compute_gradients(cost)
for i, (g, v) in enumerate(grads):
    if g is not None:
        grads[i] = (tf.clip_by_norm(g, 5), v)  # clip gradients
train_op = optimizer.apply_gradients(grads)

1. tf.clip_by_value

tf.clip_by_value(
    t,
    clip_value_min,
    clip_value_max,
    name=None
)

 Returns:A clipped Tensor.

输入一个张量t,把t中的每一个元素的值都压缩在clip_value_min和clip_value_max之间。小于min的让它等于min,大于max的元素的值等于max。

例子:

import tensorflow as tf;
import numpy as np;
 
A = np.array([[1,1,2,4], [3,4,8,5]])
 
with tf.Session() as sess:
    print sess.run(tf.clip_by_value(A, 2, 5))

>>>
[[2 2 2 4]
 [3 4 5 5]]

2. tf.clip_by_norm

tf.clip_by_norm(
    t,
    clip_norm,
    axes=None,
    name=None
)
Returns:A clipped Tensor.

指对梯度进行裁剪,通过控制梯度的最大范式,防止梯度爆炸的问题,是一种比较常用的梯度规约的方式。

  • t: 输入tensor,也可以是list
  • t_list[i] * clip_norm / max(L2_norm, clip_norm)

注意上面的t可以是list,所以最后做比较的时候是将t的二范式和clip_norm作比较。看下面的例子:

a = np.array([2.,5.])
b = tf.clip_by_norm(a, 5)
with tf.Session() as sess:
    print(sess.run(tf.norm(a)))
    print(sess.run(b))
    
>>>
5.3851647
[1.8569534 4.6423836]

3. tf.clip_by_average_norm

tf.clip_by_average_norm(
    t,
    clip_norm,
    name=None
)

Returns:A clipped Tensor.

其实和tf.clip_by_norm类似,只不过把

例子

a = np.array([3, 4]).astype('float32')
e = tf.clip_by_average_norm(a, 1)
with tf.Session() as sess:
    print(sess.run(e))

>>>
[1.2 1.6]

 

4. tf.clip_by_global_norm

tf.clip_by_global_norm(
    t_list,
    clip_norm,
    use_norm=None,
    name=None
)

Returns:

  • list_clipped: A list of Tensors of the same type as list_t.
  • global_norm: A 0-D (scalar) Tensor representing the global norm.

注意这里的t_list是a tuple or list of tensors。

 

通过权重梯度的总和的比率来截取多个张量的值。
t_list 是梯度张量, clip_norm 是截取的比率, 这个函数返回截取过的梯度张量和一个所有张量的全局范数。

t_list[i] 的更新公式如下:

t_list[i] * clip_norm / max(global_norm, clip_norm)

其中global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))
global_norm 是所有梯度的平方和,如果 clip_norm > global_norm ,就不进行截取。
但是这个函数的速度比clip_by_norm() 要慢,因为在截取之前所有的参数都要准备好

 

该文章转载自:https://cloud.tencent.com/developer/article/1375862

posted @ 2020-10-14 11:42  Sunshine168  阅读(533)  评论(0编辑  收藏  举报