(五)Flink Table API 编程

首先:flink根据使用的便捷性提供了三种API,自下而上是:

Table API & SQL

1、声明行:用户只关心做什么,不用关心怎么做

2、高性能:支持性能优化,可以获取更好的执行性能

3、流批统一:相同的统计逻辑,既可以流模式运行,也可以批模式运行

4、性能稳定:语义遵循SQL标准,不易变动

5、易理解:语义明确,所见即所得

Table API:tab.groupBy("word").select("word,count(1) as count")

SQL:SELECT word,COUNT(*) as cnt FROM MyTable GROUP BY word

Table API 特点:

1、Table API使得多声明的数据处理起来比较容易

  例如:我们把a大于10的数据存xxx的外部表,同时需要把a小于10的数据插入到外部表yyy,我们是使用TableAPI很方便。

    Table.filter(a>10).insertInto("xxx")

    Table.filter(a<10).insertInto("yyy")

2、TableAPI使得扩展标准SQL更容易(当且仅当需要的时候)

Table API 编程:

1、WordCount示例: 

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.table.descriptors.FileSystem;
import org.apache.flink.table.descriptors.OldCsv;
import org.apache.flink.table.descriptors.Schema;
import org.apache.flink.types.Row;

public class JavaStreamWordCount {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tEnv = TableEnvironment.getTableEnvironment(env);

        String path = JavaStreamWordCount.class.getClassLoader().getResource("words.txt").getPath();
        tEnv.connect(new FileSystem().path(path))
            .withFormat(new OldCsv().field("word", Types.STRING).lineDelimiter("\n"))
            .withSchema(new Schema().field("word", Types.STRING))
            .inAppendMode()
            .registerTableSource("fileSource");

        Table result = tEnv.scan("fileSource")
            .groupBy("word")
            .select("word, count(1) as count");

        tEnv.toRetractStream(result, Row.class).print();
        env.execute();
    }
}
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.table.descriptors.FileSystem;
import org.apache.flink.table.descriptors.OldCsv;
import org.apache.flink.table.descriptors.Schema;
import org.apache.flink.types.Row;

public class JavaStreamWordCount {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tEnv = TableEnvironment.getTableEnvironment(env);

        String path = JavaStreamWordCount.class.getClassLoader().getResource("words.txt").getPath();
        tEnv.connect(new FileSystem().path(path))
            .withFormat(new OldCsv().field("word", Types.STRING).lineDelimiter("\n"))
            .withSchema(new Schema().field("word", Types.STRING))
            .inAppendMode()
            .registerTableSource("fileSource");

        Table result = tEnv.scan("fileSource")
            .groupBy("word")
            .select("word, count(1) as count");

        tEnv.toRetractStream(result, Row.class).print();
        env.execute();
    }
}
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.BatchTableEnvironment;
import org.apache.flink.table.descriptors.FileSystem;
import org.apache.flink.table.descriptors.OldCsv;
import org.apache.flink.table.descriptors.Schema;
import org.apache.flink.types.Row;

public class JavaBatchWordCount {

    public static void main(String[] args) throws Exception {
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
        BatchTableEnvironment tEnv = BatchTableEnvironment.create(env);

        String path = JavaBatchWordCount.class.getClassLoader().getResource("words.txt").getPath();
        tEnv.connect(new FileSystem().path(path))
            .withFormat(new OldCsv().field("word", Types.STRING).lineDelimiter("\n"))
            .withSchema(new Schema().field("word", Types.STRING))
            .registerTableSource("fileSource");

        Table result = tEnv.scan("fileSource")
            .groupBy("word")
            .select("word, count(1) as count");

        tEnv.toDataSet(result, Row.class).print();
    }
}

参考:https://github.com/hequn8128/TableApiDemo

2、TableAPI操作

  (1)how to get a Table

    Table myTable = tableExnvironment.scan("MyTable"); //Table 是从tableExnvironment中scan出来的,那么MyTable是如果注册呢,即:How to register a table??大致又三种:

    

 

  (2)how to emit a Table  

    

    (3)  how to query a Table

    

3、 Columns Operation & Function

 

 

4、 Row-based Operation

 

 

 

 

Table SQL 编程:

1、如何在流上运行SQL查询

  参考:https://github.com/ververica/sql-training

2、如何使用SQL CLI客户端

3、执行window aggregate 和non-window aggregate,并理解其区别

4、如何用SQL消费Kafka数据

5、如何用SQL将结果写入Kafka和ElasticSearch

还有......更过会在1.9支持,敬请关注

 

 

 

posted @ 2019-05-04 15:28  舞羊  阅读(3041)  评论(0编辑  收藏  举报