python深度优先、广度优先和A star search
1 class Node: 2 """ 3 This class describes a single node contained within a graph. 4 It has the following instannce level attributes: 5 6 ID: An integer id for the node i.e. 1 7 heuristic_cost: A float value representing the estimated 8 cost to the goal node 9 """ 10 def __init__(self, ID, heuristic_cost): 11 self.ID = ID 12 self.connected_nodes = [] 13 self.heuristic_cost = heuristic_cost 14 15 def __repr__(self): 16 ID = self.ID 17 hx = self.heuristic_cost 18 if len(self.connected_nodes)==0: 19 nodes = 'None' 20 else: 21 nodes = ','.join(str(cn[1].ID) for cn in self.connected_nodes) 22 return 'Node:{}\nh(n):{}\nConnected Nodes:{}'.format(ID, hx, nodes) 23 24 def set_connected_nodes(self,connected_nodes): 25 """ 26 Adds edges that lead from this node to other nodes: 27 28 Parameters: 29 - connected_nodes: A list of tuples consisting of (cost, Node), 30 where 'cost' is a floating point value 31 indicating the cost to get from this node 32 to 'Node' and 'Node' is a Node object 33 """ 34 self.connected_nodes = connected_nodes 35 36 def build_graph(): 37 """ 38 Builds the graph to be parsed by the search algorithms. 39 Returns: The starting node, which is the entry point into the graph 40 """ 41 ids = range(13) 42 coords = [(0,0), (1,1), (1,0), (1,1), (5,2), (3,1), (3,0), 43 (3,-1), (5,1), (4,1), (4,0), (4,-2), (7,0)] 44 45 #https://en.wikipedia.org/wiki/Euclidean_distance 46 euclidean_distance = lambda x1y1, x2y2: ((x1y1[0]-x2y2[0])**2 + (x1y1[1]-x2y2[1])**2)**(0.5) 47 48 def build_connected_node_list(from_id, to_ids): 49 starting_coords = coords[from_id] 50 51 connected_nodes = [] 52 for to_id in to_ids: 53 connected_nodes.append((euclidean_distance(starting_coords, coords[to_id]), all_nodes[to_id])) 54 55 return connected_nodes 56 57 goal_coords = (7,0) 58 all_nodes = [Node(_id, euclidean_distance(coord, goal_coords)) for _id, coord in zip(ids, coords)] 59 60 all_nodes[8].set_connected_nodes(build_connected_node_list(8, [12])) 61 all_nodes[10].set_connected_nodes(build_connected_node_list(10,[12])) 62 all_nodes[5].set_connected_nodes(build_connected_node_list(5, [8])) 63 all_nodes[6].set_connected_nodes(build_connected_node_list(6, [9, 10])) 64 all_nodes[7].set_connected_nodes(build_connected_node_list(7, [11])) 65 all_nodes[1].set_connected_nodes(build_connected_node_list(1, [4,5])) 66 all_nodes[2].set_connected_nodes(build_connected_node_list(2, [5,6])) 67 all_nodes[3].set_connected_nodes(build_connected_node_list(3, [7])) 68 all_nodes[0].set_connected_nodes(build_connected_node_list(0, [1,2,3])) 69 70 return all_nodes[0]
1 # The starting node. You can use this cell to familiarize 2 # yourself with the node/graph structure 3 build_graph()
代码:
1 import numpy 2 3 def depth_first_search(starting_node, goal_node): 4 """ 5 This function implements the depth first search algorithm 6 7 Parameters: 8 - starting_node: The entry node into the graph 9 - goal_node: The integer ID of the goal node. 10 11 Returns: 12 A list containing the visited nodes in order they were visited with starting node 13 always being the first node and the goal node always being the last 14 """ 15 visited_nodes_in_order = [] 16 17 # YOUR CODE HERE 18 #raise NotImplementedError() 19 stack = [] 20 visited = set() # initialize explored set to empty 21 stack.append(starting_node) 22 23 while True: 24 # if the stack is empty, then return failure 25 if len(stack) == 0: 26 return 'failure' 27 28 # choose a leaf node and remove it from the stack 29 leafnode = stack.pop() 30 31 if leafnode not in visited: 32 visited_nodes_in_order.append(leafnode.ID) 33 34 # if leaf node contain a good state, then return visited_nodes_in_order 35 if leafnode.ID == goal_node: 36 return visited_nodes_in_order 37 38 # add the node to the explored set 39 for cn in leafnode.connected_nodes: 40 if cn[1] not in visited: 41 stack.append(leafnode) 42 stack.append(cn[1]) 43 if cn[1] not in visited: 44 visited_nodes_in_order.append(cn[1].ID) 45 visited.add(cn[1]) 46 break 47 48 def iterative_deepening_depth_first_search(starting_node, goal_node): 49 """ 50 This function implements the iterative deepening depth first search algorithm 51 52 Parameters: 53 - starting_node: The entry node into the graph 54 - goal_node: The integer ID of the goal node. 55 56 Returns: 57 A list containing the visited node ids in order they were visited with starting node 58 always being the first node and the goal node always being the last 59 """ 60 visited_nodes_in_order = [] 61 62 # YOUR CODE HERE 63 iterative_deepening_search(starting_node, goal_node, visited_nodes_in_order) 64 65 return visited_nodes_in_order 66 67 def iterative_deepening_search(starting_node, goal_node, visited_nodes_in_order): 68 69 depth = 0 70 while depth >= 0: 71 result = depth_limited_search(starting_node, goal_node, depth, visited_nodes_in_order) 72 73 if result != 'cutoff' and result != 'failure': 74 return 75 76 depth = depth+1 77 78 def depth_limited_search(starting_node, goal_node, limit, visited_nodes_in_order): 79 return recursive_dls(starting_node, goal_node, limit, visited_nodes_in_order) 80 81 def recursive_dls(node, goal_node, limit, visited_nodes_in_order): 82 """ 83 :param node: 84 :param goal_node: 85 :param limit: 86 :return: "failure":fail,"cutoff":cutoff,True:success 87 """ 88 89 visited_nodes_in_order.append(node.ID) 90 91 # goal test 92 if node.ID == goal_node: 93 return True 94 elif limit == 0: 95 return "cutoff" 96 else: 97 cutoff_occurred = False 98 99 for cn in node.connected_nodes: 100 child = cn[1] 101 result = recursive_dls(child, goal_node, limit-1, visited_nodes_in_order) 102 103 if result == "cutoff": 104 cutoff_occurred = True 105 elif result != "failure": 106 return True 107 108 if cutoff_occurred: 109 return "cutoff" 110 else: 111 return "failure" 112 113 def reconstruct_path(came_from, current): 114 path = [current.ID] 115 116 while current in came_from: 117 current = came_from[current] 118 path.append(current.ID) 119 120 return path 121 122 123 def a_star_search(starting_node, goal_node): 124 """ 125 This function implements the A* search algorithm 126 127 Parameters: 128 - starting_node: The entry node into the graph 129 - goal_node: The integer ID of the goal node. 130 131 Returns: 132 A list containing the visited node ids in order they were visited with starting node 133 always being the first node and the goal node always being the last 134 """ 135 136 visited_nodes_in_order = [] 137 138 # YOUR CODE HERE 139 140 # The set of nodes already evaluated 141 close_set = set() 142 143 # The set of currently discovered nodes that are not evaluated yet. 144 # Initially, only the start node is known. 145 open_set = [] 146 147 # For each node, which node it can most efficiently be reached from. 148 # If a node can be reached from many nodes, cameFrom will eventually contain the 149 # most efficient previous step. 150 came_from = {} 151 152 # For each node, the cost of getting from the start node to that node 153 gscore = {starting_node:0} 154 155 # for each node, the total cost of getting from the start node to the goal 156 # by passing by that node. That value is partly known, partly heuristic. 157 fscore = {starting_node:starting_node.heuristic_cost} 158 159 open_set.append((fscore[starting_node], starting_node)) 160 161 while open_set: 162 163 # find the node in openSet having the lowest fScore[] value 164 lowscore = open_set[-1][0] 165 current = open_set[-1][1] 166 for item in open_set: 167 if item[0] < lowscore: 168 current = item[1] 169 lowscore = item[0] 170 171 if current.ID == goal_node: 172 path = reconstruct_path(came_from, current) 173 for item in reversed(path): 174 visited_nodes_in_order.append(item) 175 176 open_set.remove((lowscore, current)) 177 178 close_set.add(current) 179 180 for cn in current.connected_nodes: 181 next = cn[1] 182 cost = cn[0] 183 184 # Ignore the neighbor which is already evaluated 185 if next in close_set: 186 continue 187 188 # the cost from start to a neighbor via current 189 new_cost = gscore[current] + cost 190 191 # Discover a new node 192 if next not in [i[1] for i in open_set]: 193 open_set.append((fscore.get(next, numpy.inf), next)) 194 elif new_cost >= gscore.get(next, numpy.inf): 195 continue 196 197 # This path is the best until now. Record it 198 came_from[next] = current 199 gscore[next] = new_cost 200 fscore[next] = gscore[next] + next.heuristic_cost 201 202 return visited_nodes_in_order
测试:
1 goal_node = 12 2 depth_first_search_answer = [0, 1, 4, 5, 8, 12] 3 iterative_deepening_depth_first_search_answer = [0, 0, 1, 2, 3, 0, 1, 4 4, 5, 2, 5, 6, 3, 7, 5 0, 1, 4, 5, 8, 2, 5, 6 8, 6, 9, 10, 3, 7, 11, 7 0, 1, 4, 5, 8, 12] 8 a_star_search_answer = [0, 2, 6, 10, 12] 9 10 assert (depth_first_search(build_graph(), goal_node)==depth_first_search_answer) 11 assert (iterative_deepening_depth_first_search(build_graph(), goal_node)==iterative_deepening_depth_first_search_answer) 12 assert (a_star_search(build_graph(), goal_node)==a_star_search_answer)
积沙成塔
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步