MR框架-->Combiner组件和Partitioner组件

  • 认识Combiner组件和Partitioner组件
  • 实例场景

1.Combiner组件:

对比:不使用Combiner,那么所有的结果都是reduce完成,效率相对低下

  1. 为了进一步提升运算速度,使用Combiner组件,减少MapTasks输出的量及数据网络传输量每一个map可能会产生大量的输出,Combiner的作用就是在map端对输出先做一次合并,减少传输到reducer的数据量
  2. Combiner最基本是实现本地key的归并,Combiner具有类似本地的reduce功能

2.使用场景:

  Combiner的输出是Reducer的输出,Combiner是可插拔的,不会影响最终的计算结果,之应对与那种Reducer的输入key/value与输出key/value类型完全一致。一般是在Mapper和Reducer之间加入Combiner的,一般用于:求和,求次数可以使用,但是不能用于求平均数

        //设置reducer相关
        job.setReducerClass(WordCountReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        //设置combiner组件(效果类似于reduce)
        job.setCombinerClass(WordCountReducer.class);                

 

3.Partitioner组件:

  MapReduce框架中,Mapper的输出的结果是根据内部算法自动分配到不同的Reducer上的,而Partitioner组件是可以决定MapTask输出的数据交由哪个ReduceTask处理的,

 

 

 我们可以使用Partitioner对上图进行划分,要写的类如下所示

static class WordCountPartitioner extends Partitioner<Text, IntWritable>{

        public int getPartition(Text key, IntWritable value, int arg2) {
            if(key.toString().equals("java")) {//根据shenm划分
                return 0;//第几个区
            }
            if(key.toString().equals("html")) {
                return 1;
            }
            return 2;
        }

实例:根据名字来进行划分区域和计算值(使用Combiner和Partitioner)

  1. Mapper类
  2. Reducer类(和之前没有什么区别)
  3. Partitioner类
  4. 提交类
package com.hp.mr;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class wordCountApp {
//写一个mapper类
    /*
     * KEYIN     首行偏移量
     * VALUEIN   一行数据
     * KEYOUT    map输出的类
     * VALUEOUT  map输出的value
     * MR中的数据类型
     * java            MR
     * String        Text
     * int            IntWriteable
     * long            LongWiteable
     */
    static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
        @Override
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
                throws IOException, InterruptedException {
            //读取一行数据
            String line = value.toString();
            //根据指定规则截取数据
            String [] words = line.split(" ");
            //获取有效数据
            for (int i = 0; i < words.length; i++) {
                //将数据写入上下文
                context.write(new Text(words[i]), new IntWritable(1));
            }
            
        }
    }
    static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values,
                Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
            //定义空变量
            int i = 0 ;
            //循环累加值
            for (IntWritable value : values) {
                i += value.get();
            }
            //写入上下文
            context.write(key, new IntWritable(i));
        }
    }
    static class WordCountPartitioner extends Partitioner<Text, IntWritable>{

        public int getPartition(Text key, IntWritable value, int arg2) {
            if(key.toString().equals("java")) {
                return 0;
            }
            if(key.toString().equals("html")) {
                return 1;
            }
            return 2;
        }
    public static void main(String[] args) throws Exception {
        //加载配置文件
        Configuration config = new Configuration();
        //创建job对象
        Job job = Job.getInstance(config);
        //设置提交主类
        job.setJarByClass(wordCountApp.class);
        //设置mapper相关设置提交主类
        job.setMapperClass(WordCountMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        //设置reducer相关
        job.setReducerClass(WordCountReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        //设置combiner组件(效果类似于reduce)
        job.setCombinerClass(WordCountReducer.class);
        //配置partitioner组件
        job.setPartitionerClass(WordCountPartitioner.class);
        //设置分区个数
        job.setNumReduceTasks(3);
        //设置输入路径
        FileInputFormat.setInputPaths(job, new Path("/score.txt"));
        //设置输出路径
        FileOutputFormat.setOutputPath(job, new Path("/ouput10"));
        //提交任务
        job.waitForCompletion(true);
    }
}
}

 

posted @ 2020-11-07 16:13  大可耐啊  阅读(267)  评论(0编辑  收藏  举报