使用XGBoost实现多分类预测的实践代码

import pandas as pd
import numpy as np
import xgboost as xgb
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import KFold
import matplotlib.pyplot as plt
import seaborn as sns
import gc

## load data
train_data = pd.read_csv('../../data/train.csv')
test_data = pd.read_csv('../../data/test.csv')
num_round = 1000

## category feature one_hot
test_data['label'] = -1
data = pd.concat([train_data, test_data])
cate_feature = ['gender', 'cell_province', 'id_province', 'id_city', 'rate', 'term']
for item in cate_feature:
    data[item] = LabelEncoder().fit_transform(data[item])
    item_dummies = pd.get_dummies(data[item])
    item_dummies.columns = [item + str(i + 1) for i in range(item_dummies.shape[1])]
    data = pd.concat([data, item_dummies], axis=1)
data.drop(cate_feature,axis=1,inplace=True)

train = data[data['label'] != -1]
test = data[data['label'] == -1]

##Clean up the memory
del data, train_data, test_data
gc.collect()

## get train feature
del_feature = ['auditing_date', 'due_date', 'label']
features = [i for i in train.columns if i not in del_feature]

## Convert the label to two categories
train_x = train[features]
train_y = train['label'].astype(int).values
test = test[features]

params = {
    'booster': 'gbtree',
    'objective': 'multi:softmax',
    # 'objective': 'multi:softprob',   #Multiclassification probability
    'num_class': 33,
    'eval_metric': 'mlogloss',
    'gamma': 0.1,
    'max_depth': 8,
    'alpha': 0,
    'lambda': 0,
    'subsample': 0.7,
    'colsample_bytree': 0.5,
    'min_child_weight': 3,
    'silent': 0,
    'eta': 0.03,
    'nthread': -1,
    'missing': 1,
    'seed': 2019,
}

folds = KFold(n_splits=5, shuffle=True, random_state=2019)
prob_oof = np.zeros(train_x.shape[0])
test_pred_prob = np.zeros(test.shape[0])


## train and predict
feature_importance_df = pd.DataFrame()
for fold_, (trn_idx, val_idx) in enumerate(folds.split(train)):
    print("fold {}".format(fold_ + 1))
    trn_data = xgb.DMatrix(train_x.iloc[trn_idx], label=train_y[trn_idx])
    val_data = xgb.DMatrix(train_x.iloc[val_idx], label=train_y[val_idx])

    watchlist = [(trn_data, 'train'), (val_data, 'valid')]
    clf = xgb.train(params, trn_data, num_round, watchlist, verbose_eval=20, early_stopping_rounds=50)

    prob_oof[val_idx] = clf.predict(xgb.DMatrix(train_x.iloc[val_idx]), ntree_limit=clf.best_ntree_limit)
    fold_importance_df = pd.DataFrame()
    fold_importance_df["Feature"] = clf.get_fscore().keys()
    fold_importance_df["importance"] = clf.get_fscore().values()
    fold_importance_df["fold"] = fold_ + 1
    feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)

    test_pred_prob += clf.predict(xgb.DMatrix(test), ntree_limit=clf.best_ntree_limit) / folds.n_splits
result = np.argmax(test_pred_prob, axis=1)


## plot feature importance
cols = (feature_importance_df[["Feature", "importance"]].groupby("Feature").mean().sort_values(by="importance", ascending=False).index)
best_features = feature_importance_df.loc[feature_importance_df.Feature.isin(cols)].sort_values(by='importance',ascending=False)
plt.figure(figsize=(8, 15))
sns.barplot(y="Feature",
            x="importance",
            data=best_features.sort_values(by="importance", ascending=False))
plt.title('LightGBM Features (avg over folds)')
plt.tight_layout()
plt.savefig('../../result/xgb_importances.png')

参考代码链接为:https://github.com/ikkyu-wen/data_mining_models,这里面的xgboost实现多分类

posted on 2020-01-14 22:39  wyhluckydog  阅读(6850)  评论(0编辑  收藏  举报