AtCoder Regular Contest 077 D - 11
题目链接:http://arc077.contest.atcoder.jp/tasks/arc077_b
Time limit : 2sec / Memory limit : 256MB
Score : 600 points
Problem Statement
You are given an integer sequence of length n+1, a1,a2,…,an+1, which consists of the n integers 1,…,n. It is known that each of the n integers 1,…,n appears at least once in this sequence.
For each integer k=1,…,n+1, find the number of the different subsequences (not necessarily contiguous) of the given sequence with length k, modulo 109+7.
Notes
-
If the contents of two subsequences are the same, they are not separately counted even if they originate from different positions in the original sequence.
-
A subsequence of a sequence a with length k is a sequence obtained by selecting k of the elements of a and arranging them without changing their relative order. For example, the sequences 1,3,5 and 1,2,3 are subsequences of 1,2,3,4,5, while 3,1,2 and 1,10,100 are not.
Constraints
- 1≤n≤105
- 1≤ai≤n
- Each of the integers 1,…,n appears in the sequence.
- n and ai are integers.
Input
Input is given from Standard Input in the following format:
n a1 a2 ... an+1
Output
Print n+1 lines. The k-th line should contain the number of the different subsequences of the given sequence with length k, modulo 109+7.
Sample Input 1
3 1 2 1 3
Sample Output 1
3 5 4 1
There are three subsequences with length 1: 1 and 2 and 3.
There are five subsequences with length 2: 1,1 and 1,2 and 1,3 and 2,1 and 2,3.
There are four subsequences with length 3: 1,1,3 and 1,2,1 and 1,2,3 and 2,1,3.
There is one subsequence with length 4: 1,2,1,3.
Sample Input 2
1 1 1
Sample Output 2
1 1
There is one subsequence with length 1: 1.
There is one subsequence with length 2: 1,1.
Sample Input 3
32 29 19 7 10 26 32 27 4 11 20 2 8 16 23 5 14 6 12 17 22 18 30 28 24 15 1 25 3 13 21 19 31 9
Sample Output 3
32 525 5453 40919 237336 1107568 4272048 13884156 38567100 92561040 193536720 354817320 573166440 818809200 37158313 166803103 166803103 37158313 818809200 573166440 354817320 193536720 92561040 38567100 13884156 4272048 1107568 237336 40920 5456 528 33 1
Be sure to print the numbers modulo 109+7.
题目大意:从n+1个序列中选出长度为k的不同子序列的个数
解题思路:
注意到有两个相同的元素
当子序列不含有相同的元素中间的元素时,子序列会被多算一次,其他情况确定,所以最终结果为:
(C(n+1,k)-C(n-d,k-1))%MOD
1 #include <iostream> 2 #include <algorithm> 3 #include <cstring> 4 #include <cstdio> 5 #include <vector> 6 #include <cstdlib> 7 #include <iomanip> 8 #include <cmath> 9 #include <ctime> 10 #include <map> 11 #include <set> 12 #include <queue> 13 #include <stack> 14 using namespace std; 15 #define lowbit(x) (x&(-x)) 16 #define max(x,y) (x>y?x:y) 17 #define min(x,y) (x<y?x:y) 18 #define MAX 100000000000000000 19 #define MOD 1000000007 20 #define pi acos(-1.0) 21 #define ei exp(1 22 #define PI 3.141592653589793238462 23 #define INF 0x3f3f3f3f3f 24 #define mem(a) (memset(a,0,sizeof(a))) 25 typedef long long ll; 26 ll gcd(ll a,ll b){ 27 return b?gcd(b,a%b):a; 28 } 29 const int N=200005; 30 const int maxn = 1e5 + 10; 31 ll pos[maxn],fac[maxn],facm[maxn]; 32 ll quick_pow(ll a,ll n,ll p) 33 { 34 ll x = a; 35 ll res = 1; 36 while(n){ 37 if(n & 1){ 38 res = ((ll)res * (ll)x) % p; 39 } 40 n >>= 1; 41 x = ((ll)x*(ll)x) % p; 42 } 43 return res; 44 } 45 ll C(ll n,ll k){ 46 if(k > n) return 0ll; 47 ll ans = fac[k]*fac[n-k]%MOD; 48 ans = (fac[n]*quick_pow(ans,MOD-2ll,MOD))%MOD; 49 return ans; 50 } 51 int main() 52 { 53 fac[0] = 1; 54 for(int i = 1;i < maxn;i++) 55 fac[i] = (fac[i-1]*i)%MOD; 56 ll n; 57 scanf("%lld", &n); 58 n++; 59 ll m, x; 60 for(int i = 1;i <= n;i++){ 61 scanf("%lld", &x); 62 if (pos[x]){ 63 m = n - (i - pos[x] + 1); 64 break; 65 } 66 pos[x] = i; 67 } 68 for(int i = 1;i <= n;i++) 69 printf("%lld\n", (C(n, i) - C(m, i-1)+MOD) % MOD); 70 return 0; 71 }