数据分析与数据挖掘研究之一

前言:之前做过一些数据分析与数据挖掘相关的工作,最近抽空将之前做的内容简单整理一下,方便查看,主要使用R语言和PERL脚本语言,使用TCGA和ICGC数据库中的临床数据,做类似的分析可以参考一下,如果想查看详细内容与数据可以通过本人的Gitee及Github仓库下载,链接于篇尾附上。

一、标题:Effect of HSP90AB1 on the local immune response of hepatocellular carcinoma and it realtionship to prognosis(HSP90β对肝癌局部免疫的影响及对肝癌患者预后的影响)

二、部分代码及结果展示:

1、整理TCGA数据库肝细胞癌临床数据的部分PERL脚本

use strict;
#use warnings;

use XML::Simple;

opendir(RD, ".") or die $!;
my @dirs=readdir(RD);
closedir(RD);
open(WF,">clinical.xls") or die $!;
print WF "Id\tfutime\tfustat\tAge\tGender\tGrade\tStage\tT\tM\tN\n";
foreach my $dir(@dirs){
	#print $dir . "\n";
	next if($dir eq '.');
	next if($dir eq '..');
	#print $dir . "\n";
	
	if(-d $dir){
	  opendir(RD,"$dir") or die $!;
	  while(my $xmlfile=readdir(RD)){
	  	if($xmlfile=~/\.xml$/){
	  		#print "$dir\\$xmlfile\n";
				my $userxs = XML::Simple->new(KeyAttr => "name");
				my $userxml="";
				if(-f "$dir/$xmlfile"){
					$userxml = $userxs->XMLin("$dir/$xmlfile");
				}else{
					$userxml = $userxs->XMLin("$dir\$xmlfile");
				}
				# print output
				#open(WF,">dumper.txt") or die $!;
				#print WF Dumper($userxml);
				#close(WF);
				my $disease_code=$userxml->{'admin:admin'}{'admin:disease_code'}{'content'};   #get disease code
				my $disease_code_lc=lc($disease_code);
				my $patient_key=$disease_code_lc . ':patient';                                #ucec:patient
				my $follow_key=$disease_code_lc . ':follow_ups';
				
				my $patient_barcode=$userxml->{$patient_key}{'shared:bcr_patient_barcode'}{'content'};  #TCGA-AX-A1CJ
				my $gender=$userxml->{$patient_key}{'shared:gender'}{'content'};      #male/female
				my $age=$userxml->{$patient_key}{'clin_shared:age_at_initial_pathologic_diagnosis'}{'content'};
				my $race=$userxml->{$patient_key}{'clin_shared:race_list'}{'clin_shared:race'}{'content'};  #white/black
				my $grade=$userxml->{$patient_key}{'shared:neoplasm_histologic_grade'}{'content'};  #G1/G2/G3
				my $clinical_stage=$userxml->{$patient_key}{'shared_stage:stage_event'}{'shared_stage:clinical_stage'}{'content'};  #stage I
				my $clinical_T=$userxml->{$patient_key}{'shared_stage:stage_event'}{'shared_stage:tnm_categories'}{'shared_stage:clinical_categories'}{'shared_stage:clinical_T'}{'content'};
				my $clinical_M=$userxml->{$patient_key}{'shared_stage:stage_event'}{'shared_stage:tnm_categories'}{'shared_stage:clinical_categories'}{'shared_stage:clinical_M'}{'content'};
				my $clinical_N=$userxml->{$patient_key}{'shared_stage:stage_event'}{'shared_stage:tnm_categories'}{'shared_stage:clinical_categories'}{'shared_stage:clinical_N'}{'content'};
				my $pathologic_stage=$userxml->{$patient_key}{'shared_stage:stage_event'}{'shared_stage:pathologic_stage'}{'content'};  #stage I
				my $pathologic_T=$userxml->{$patient_key}{'shared_stage:stage_event'}{'shared_stage:tnm_categories'}{'shared_stage:pathologic_categories'}{'shared_stage:pathologic_T'}{'content'};
				my $pathologic_M=$userxml->{$patient_key}{'shared_stage:stage_event'}{'shared_stage:tnm_categories'}{'shared_stage:pathologic_categories'}{'shared_stage:pathologic_M'}{'content'};
				my $pathologic_N=$userxml->{$patient_key}{'shared_stage:stage_event'}{'shared_stage:tnm_categories'}{'shared_stage:pathologic_categories'}{'shared_stage:pathologic_N'}{'content'};
				$gender=(defined $gender)?$gender:"unknow";
				$age=(defined $age)?$age:"unknow";
				$race=(defined $race)?$race:"unknow";
				$grade=(defined $grade)?$grade:"unknow";
				$clinical_stage=(defined $clinical_stage)?$clinical_stage:"unknow";
				$clinical_T=(defined $clinical_T)?$clinical_T:"unknow";
				$clinical_M=(defined $clinical_M)?$clinical_M:"unknow";
				$clinical_N=(defined $clinical_N)?$clinical_N:"unknow";
				$pathologic_stage=(defined $pathologic_stage)?$pathologic_stage:"unknow";
				$pathologic_T=(defined $pathologic_T)?$pathologic_T:"unknow";
				$pathologic_M=(defined $pathologic_M)?$pathologic_M:"unknow";
				$pathologic_N=(defined $pathologic_N)?$pathologic_N:"unknow";
				
				my $survivalTime="";
				my $vital_status=$userxml->{$patient_key}{'clin_shared:vital_status'}{'content'};
				my $followup=$userxml->{$patient_key}{'clin_shared:days_to_last_followup'}{'content'};
				my $death=$userxml->{$patient_key}{'clin_shared:days_to_death'}{'content'};
				if($vital_status eq 'Alive'){
					$survivalTime="$followup\t0";
				}
				else{
					$survivalTime="$death\t1";
				}
				for my $i(keys %{$userxml->{$patient_key}{$follow_key}}){
					eval{
							$followup=$userxml->{$patient_key}{$follow_key}{$i}{'clin_shared:days_to_last_followup'}{'content'};
							$vital_status=$userxml->{$patient_key}{$follow_key}{$i}{'clin_shared:vital_status'}{'content'};
							$death=$userxml->{$patient_key}{$follow_key}{$i}{'clin_shared:days_to_death'}{'content'};
				  };
				  if($@){
				  	  for my $j(0..5){                       #假设最多有6次随访
								  my $followup_for=$userxml->{$patient_key}{$follow_key}{$i}[$j]{'clin_shared:days_to_last_followup'}{'content'};
									my $vital_status_for=$userxml->{$patient_key}{$follow_key}{$i}[$j]{'clin_shared:vital_status'}{'content'};
									my $death_for=$userxml->{$patient_key}{$follow_key}{$i}[$j]{'clin_shared:days_to_death'}{'content'};
									if( ($followup_for =~ /\d+/) || ($death_for  =~ /\d+/) ){
												  $followup=$followup_for;
												  $vital_status=$vital_status_for;
												  $death=$death_for;
												  my @survivalArr=split(/\t/,$survivalTime);
													if($vital_status eq 'Alive'){
														if($followup>$survivalArr[0]){
													    $survivalTime="$followup\t0";
													  }
												  }
												  else{
												  	if($death>$survivalArr[0]){
													    $survivalTime="$death\t1";
													  }
												  }
									}
						  }
				  }

				  my @survivalArr=split(/\t/,$survivalTime);
					if($vital_status eq 'Alive'){
						if($followup>$survivalArr[0]){
					    $survivalTime="$followup\t0";
					  }
				  }
				  else{
				  	if($death>$survivalArr[0]){
					    $survivalTime="$death\t1";
					  }
				  }
				  
				}
				print WF "$patient_barcode\t$survivalTime\t$age\t$gender\t$grade\t$pathologic_stage\t$pathologic_T\t$pathologic_M\t$pathologic_N\n";
			}
		}
		close(RD);
	}
}
close(WF);

2、使用R语言分析正常组与肿瘤组中HSP90AB1的表达情况

#if (!requireNamespace("BiocManager", quietly = TRUE))
#    install.packages("BiocManager")
#BiocManager::install("limma")

#install.packages("ggplot2")
#install.packages("ggpubr")


#引用包
library(limma)
library(ggplot2)
library(ggpubr)
expFile="symbol.txt"     #表达输入文件
gene="VCAN"              #基因的名称
setwd("C:\\Users\\lexb4\\Desktop\\geneImmune\\07.diff")     #设置工作目录

#读取基因表达文件,并对数据进行处理
rt=read.table(expFile, header=T, sep="\t", check.names=F)
rt=as.matrix(rt)
rownames(rt)=rt[,1]
exp=rt[,2:ncol(rt)]
dimnames=list(rownames(exp),colnames(exp))
data=matrix(as.numeric(as.matrix(exp)), nrow=nrow(exp), dimnames=dimnames)
data=avereps(data)
data=t(data[gene,,drop=F])

#正常和肿瘤数目
group=sapply(strsplit(rownames(data),"\\-"), "[", 4)
group=sapply(strsplit(group,""), "[", 1)
group=gsub("2", "1", group)
conNum=length(group[group==1])       #正常组样品数目
treatNum=length(group[group==0])     #肿瘤组样品数目
Type=c(rep(1,conNum), rep(2,treatNum))

#差异分析
exp=cbind(data, Type)
exp=as.data.frame(exp)
colnames(exp)=c("gene", "Type")
exp$Type=ifelse(exp$Type==1, "Normal", "Tumor")
exp$gene=log2(exp$gene+1)

#设置比较组
group=levels(factor(exp$Type))
exp$Type=factor(exp$Type, levels=group)
comp=combn(group,2)
my_comparisons=list()
for(i in 1:ncol(comp)){my_comparisons[[i]]<-comp[,i]}

#绘制boxplot
boxplot=ggboxplot(exp, x="Type", y="gene", color="Type",
		          xlab="",
		          ylab=paste0(gene, " expression"),
		          legend.title="Type",
		          palette = c("blue","red"),
		          add = "jitter")+ 
	stat_compare_means(comparisons=my_comparisons,symnum.args=list(cutpoints = c(0, 0.001, 0.01, 0.05, 1), symbols = c("***", "**", "*", "ns")),label = "p.signif")

#输出图片
pdf(file=paste0(gene,".diff.pdf"), width=5, height=4.5)
print(boxplot)
dev.off()

3、使用R语言分析不同类型免疫细胞在肝细胞癌中的表达水平及相关关系

#install.packages("corrplot")

library(corrplot)                   #引用包
immFile="CIBERSORT-Results.txt"     #免疫细胞浸润的结果文件
pFilter=0.05                        #免疫细胞浸润结果过滤条件
setwd("C:\\Users\\Administrator\\Desktop\\geneimmune\\10immunePlot")    #设置工作目录

#读取免疫细胞浸润的结果文件,并对数据进行整理
immune=read.table(immFile, header=T, sep="\t", check.names=F, row.names=1)
immune=immune[immune[,"P-value"]<pFilter,]
immune=as.matrix(immune[,1:(ncol(immune)-3)])
data=t(immune)

#绘制柱状图
col=rainbow(nrow(data), s=0.7, v=0.7)
pdf(file="barplot.pdf", width=22, height=10)
par(las=1,mar=c(8,5,4,16),mgp=c(3,0.1,0),cex.axis=1.5)
a1=barplot(data,col=col,yaxt="n",ylab="Relative Percent",xaxt="n",cex.lab=1.8)
a2=axis(2,tick=F,labels=F)
axis(2,a2,paste0(a2*100,"%"))
axis(1,a1,labels=F)
par(srt=60,xpd=T);text(a1,-0.02,colnames(data),adj=1,cex=0.6);par(srt=0)
ytick2=cumsum(data[,ncol(data)]);ytick1=c(0,ytick2[-length(ytick2)])
legend(par('usr')[2]*0.98,par('usr')[4],legend=rownames(data),col=col,pch=15,bty="n",cex=1.3)
dev.off()

#删除正常样品
group=sapply(strsplit(colnames(data),"\\-"), "[", 4)
group=sapply(strsplit(group,""), "[", 1)
group=gsub("2", "1", group)
data=data[,group==0,drop=F]

#绘制免疫细胞相关性的图形
pdf(file="corrplot.pdf", width=13, height=13)
par(oma=c(0.5,1,1,1.2))
immune=immune[,colMeans(immune)>0]
M=cor(immune)
corrplot(M,
         method = "color",
         order = "hclust",
         tl.col="black",
         addCoef.col = "black",
         number.cex = 0.8,
         col=colorRampPalette(c("blue", "white", "red"))(50)
         )
dev.off()

4、使用R语言分析正常组及肝癌组中不同免疫细胞浸润水平

#install.packages("pheatmap")
#install.packages("vioplot")


#引用包
library(vioplot)
library(pheatmap)
input="CIBERSORT-Results.txt"      #免疫细胞浸润文件
pFilter=0.05                       #免疫细胞浸润结果过滤条件
setwd("C:\\Users\\Administrator\\Desktop\\生信文章\\geneimmune\\11heatmap\\vioplot-high")      #设置工作目录

#读取免疫结果文件,并对数据进行整理
immune=read.table("CIBERSORT-Results.txt", header=T, sep="\t", check.names=F, row.names=1)
immune=immune[immune[,"P-value"]<pFilter,,drop=F]
immune=as.matrix(immune[,1:(ncol(immune)-3)])
data=t(immune)

#正常和肿瘤数目
group=sapply(strsplit(colnames(data),"\\-"), "[", 4)
group=sapply(strsplit(group,""), "[", 1)
group=gsub("2", "1", group)
conNum=length(group[group==1])       #正常组样品数目
treatNum=length(group[group==0])     #肿瘤组样品数目

#定义热图的注释文件
Type=c(rep("Normal",conNum), rep("Tumor",treatNum))
names(Type)=colnames(data)
Type=as.data.frame(Type)

#绘制热图
pdf(file="heatmap.pdf", width=12, height=6)
pheatmap(data, 
         annotation=Type, 
         color = colorRampPalette(c(rep("green",1), rep("black",1), rep("red",3)))(100),
         cluster_cols =F,
         show_colnames=F,
         fontsize = 8,
         fontsize_row=7,
         fontsize_col=5)
dev.off()


#绘制小提琴图
data=t(data)
outTab=data.frame()
pdf(file="vioplot.pdf", width=13, height=8)
par(las=1, mar=c(10,6,3,3))
x=c(1:ncol(data))
y=c(1:ncol(data))
xMax=ncol(data)*3-2
plot(x,y,
     xlim=c(0,xMax),ylim=c(min(data),max(data)+0.02),
     main="", xlab="", ylab="Fraction",
     pch=21,
     col="white",
     xaxt="n")

#对每个免疫细胞循环,绘制小提琴图,正常样品用绿色表示,肿瘤样品用红色表示
for(i in 1:ncol(data)){
	if(sd(data[1:conNum,i])==0){
	  	data[1,i]=0.00001
	}
	if(sd(data[(conNum+1):(conNum+treatNum),i])==0){
	    data[(conNum+1),i]=0.00001
	}
	conData=data[1:conNum,i]
	treatData=data[(conNum+1):(conNum+treatNum),i]
	vioplot(conData,at=3*(i-1),lty=1,add = T,col = 'green')
	vioplot(treatData,at=3*(i-1)+1,lty=1,add = T,col = 'red')
	wilcoxTest=wilcox.test(conData, treatData)
	p=wilcoxTest$p.value
	if(p<pFilter){
	    cellPvalue=cbind(Cell=colnames(data)[i], pvalue=p)
		outTab=rbind(outTab, cellPvalue)
	}
	mx=max(c(conData,treatData))
	lines(c(x=3*(i-1)+0.2,x=3*(i-1)+0.8),c(mx,mx))
	text(x=3*(i-1)+0.5, y=mx+0.02, labels=ifelse(p<0.001, paste0("p<0.001"), paste0("p=",sprintf("%.03f",p))), cex = 0.8)
}
legend("topright", 
       c("Normal", "Tumor"),
       lwd=5,bty="n",cex=1.2,
       col=c("green","red"))
text(seq(1,xMax,3),-0.05,xpd = NA,labels=colnames(data),cex = 1,srt = 45,pos=2)
dev.off()

#输出免疫细胞和p值表格文件
write.table(outTab,file="diff.result.txt",sep="\t",row.names=F,quote=F)

5、不同拷贝子数目的HSP90β对中性粒细胞和CD8阳性T细胞在肝癌局部浸润的影响

6、HSP90β基因的表达水平、拷贝子水平及甲基化水平与不同淋巴细胞数量之间的关系

7、HSP90β基因与免疫调节基因之间的关系

8、与HSP90β相关的免疫调节基因的蛋白互作网络

9、GO及相关通路分析

10、整理患者基因表达水平与临床生存信息

#if (!requireNamespace("BiocManager", quietly = TRUE))
#    install.packages("BiocManager")
#BiocManager::install("limma")


library(limma)           #引用包
expFile="symbol.txt"     #表达数据文件
cliFile="time.txt"       #临床数据文件
geneFile="gene.txt"      #基因列表文件
setwd("C:\\Users\\Administrator\\Desktop\\geneimmune\\24mergeTime")     #工作目录(需修改)

#读取表达文件,并对输入文件整理
rt=read.table(expFile, header=T, sep="\t", check.names=F)
rt=as.matrix(rt)
rownames(rt)=rt[,1]
exp=rt[,2:ncol(rt)]
dimnames=list(rownames(exp), colnames(exp))
data=matrix(as.numeric(as.matrix(exp)), nrow=nrow(exp), dimnames=dimnames)
data=avereps(data)
data=data[rowMeans(data)>0,]

#读取免疫基因的表达量
gene=read.table(geneFile, header=F, sep="\t", check.names=F)
sameGene=intersect(as.vector(gene[,1]), row.names(data))
data=data[sameGene,]

#删掉正常样品
group=sapply(strsplit(colnames(data),"\\-"), "[", 4)
group=sapply(strsplit(group,""), "[", 1)
group=gsub("2", "1", group)
data=data[,group==0]
colnames(data)=gsub("(.*?)\\-(.*?)\\-(.*?)\\-(.*?)\\-.*", "\\1\\-\\2\\-\\3", colnames(data))
data=t(data)
data=avereps(data)

#读取生存数据
cli=read.table(cliFile, header=T, sep="\t", check.names=F, row.names=1)     #读取临床文件

#数据合并并输出结果
sameSample=intersect(row.names(data), row.names(cli))
data=data[sameSample,]
cli=cli[sameSample,]
out=cbind(cli,data)
out=cbind(id=row.names(out),out)
write.table(out,file="expTime.txt",sep="\t",row.names=F,quote=F)

11、筛选HSP90β蛋白互作网络中预后相关的免疫调节基因,绘制森林图

#install.packages('survival')


library(survival)          #引用包
coxPfilter=0.05            #显著性过滤标准
inputFile="expTime.txt"    #输入文件
setwd("C:\\Users\\Administrator\\Desktop\\geneimmune\\25uniCox")      #设置工作目录
rt=read.table(inputFile, header=T, sep="\t", check.names=F, row.names=1)    #读取输入文件
rt$futime=rt$futime/365
rt[,3:ncol(rt)]=log2(rt[,3:ncol(rt)]+1)

#对基因进行循环,找出预后相关的基因
outTab=data.frame()
sigGenes=c("futime","fustat")
for(i in colnames(rt[,3:ncol(rt)])){
	#cox分析
	cox <- coxph(Surv(futime, fustat) ~ rt[,i], data = rt)
	coxSummary = summary(cox)
	coxP=coxSummary$coefficients[,"Pr(>|z|)"]
	#保留预后相关的基因
	if(coxP<coxPfilter){
	    sigGenes=c(sigGenes,i)
		outTab=rbind(outTab,
			         cbind(id=i,
			         HR=coxSummary$conf.int[,"exp(coef)"],
			         HR.95L=coxSummary$conf.int[,"lower .95"],
			         HR.95H=coxSummary$conf.int[,"upper .95"],
			         pvalue=coxSummary$coefficients[,"Pr(>|z|)"])
			        )
	}
}

#输出单因素的结果
write.table(outTab,file="uniCox.txt",sep="\t",row.names=F,quote=F)

#输出单因素显著基因的表达量
uniSigExp=rt[,sigGenes]
uniSigExp=cbind(id=row.names(uniSigExp),uniSigExp)
write.table(uniSigExp,file="uniSigExp.txt",sep="\t",row.names=F,quote=F)


############绘制森林图函数############
bioForest=function(coxFile=null, forestFile=null, forestCol=null){
	#读取输入文件
	rt <- read.table(coxFile, header=T, sep="\t", check.names=F, row.names=1)
	gene <- rownames(rt)
	hr <- sprintf("%.3f",rt$"HR")
	hrLow  <- sprintf("%.3f",rt$"HR.95L")
	hrHigh <- sprintf("%.3f",rt$"HR.95H")
	Hazard.ratio <- paste0(hr,"(",hrLow,"-",hrHigh,")")
	pVal <- ifelse(rt$pvalue<0.001, "<0.001", sprintf("%.3f", rt$pvalue))
		
	#输出图形
	pdf(file=forestFile, width=6.5, height=5)
	n <- nrow(rt)
	nRow <- n+1
	ylim <- c(1,nRow)
	layout(matrix(c(1,2),nc=2),width=c(3,2.5))
		
	#绘制森林图左边的基因信息
	xlim = c(0,3)
	par(mar=c(4,2.5,2,1))
	plot(1,xlim=xlim,ylim=ylim,type="n",axes=F,xlab="",ylab="")
	text.cex=0.8
	text(0,n:1,gene,adj=0,cex=text.cex)
	text(1.5-0.5*0.2,n:1,pVal,adj=1,cex=text.cex);text(1.5-0.5*0.2,n+1,'pvalue',cex=text.cex,font=2,adj=1)
	text(3,n:1,Hazard.ratio,adj=1,cex=text.cex);text(3,n+1,'Hazard ratio',cex=text.cex,font=2,adj=1,)
	
	#绘制森林图
	par(mar=c(4,1,2,1),mgp=c(2,0.5,0))
	xlim = c(0,max(as.numeric(hrLow),as.numeric(hrHigh)))
	plot(1,xlim=xlim,ylim=ylim,type="n",axes=F,ylab="",xaxs="i",xlab="Hazard ratio")
	arrows(as.numeric(hrLow),n:1,as.numeric(hrHigh),n:1,angle=90,code=3,length=0.05,col="darkblue",lwd=2.5)
	abline(v=1,col="black",lty=2,lwd=2)
	boxcolor = ifelse(as.numeric(hr) > 1, forestCol[1], forestCol[2])
	points(as.numeric(hr), n:1, pch = 15, col = boxcolor, cex=1.6)
	axis(1)
	dev.off()
}

bioForest(coxFile="uniCox.txt", forestFile="forest.pdf", forestCol=c("red","green"))

12、使用筛选出的基因构建预后模型

#install.packages("glmnet")
#install.packages("survival")
#install.packages('survminer')


#引用包
library(glmnet)
library(survival)
library(survminer)
inputFile="uniSigExp.txt"      #单因素显著基因的表达输入文件
setwd("C:\\Users\\lexb4\\Desktop\\geneImmune\\26.model")         #设置工作目录
rt=read.table(inputFile, header=T, sep="\t", row.names=1, check.names=F)    #读取输入文件

#COX模型构建
multiCox=coxph(Surv(futime, fustat) ~ ., data = rt)
multiCox=step(multiCox, direction="both")
multiCoxSum=summary(multiCox)

#输出模型相关信息
outMultiTab=data.frame()
outMultiTab=cbind(
		          coef=multiCoxSum$coefficients[,"coef"],
		          HR=multiCoxSum$conf.int[,"exp(coef)"],
		          HR.95L=multiCoxSum$conf.int[,"lower .95"],
		          HR.95H=multiCoxSum$conf.int[,"upper .95"],
		          pvalue=multiCoxSum$coefficients[,"Pr(>|z|)"])
outMultiTab=cbind(id=row.names(outMultiTab),outMultiTab)
write.table(outMultiTab, file="multiCox.txt", sep="\t", row.names=F, quote=F)

#输出风险文件
score=predict(multiCox, type="risk", newdata=rt)
coxGene=rownames(multiCoxSum$coefficients)
coxGene=gsub("`", "", coxGene)
outCol=c("futime", "fustat", coxGene)
risk=as.vector(ifelse(score>median(score), "high", "low"))
outTab=cbind(rt[,outCol], riskScore=as.vector(score), risk)
write.table(cbind(id=rownames(outTab),outTab), file="risk.txt", sep="\t", quote=F, row.names=F)

#绘制森林图
pdf(file="multi.forest.pdf", width=10, height=6, onefile=FALSE)
ggforest(multiCox,
		 data=rt,
         main = "Hazard ratio",
         cpositions = c(0.02,0.22, 0.4), 
         fontsize = 0.7, 
         refLabel = "reference", 
         noDigits = 2)
dev.off()

13、绘制该预后模型高低风险组的生存曲线

#install.packages("survival")
#install.packages("survminer")


#引用包
library(survival)
library(survminer)
setwd("C:\\Users\\lexb4\\Desktop\\geneImmune\\27.survival")     #设置工作目录

#定义生存曲线的函数
bioSurvival=function(inputFile=null, outFile=null){
	#读取输入文件
	rt=read.table(inputFile, header=T, sep="\t", check.names=F)
	#比较高低风险组生存差异,得到显著性p值
	diff=survdiff(Surv(futime, fustat) ~ risk, data=rt)
	pValue=1-pchisq(diff$chisq, df=1)
	if(pValue<0.001){
		pValue="p<0.001"
	}else{
		pValue=paste0("p=",sprintf("%.03f",pValue))
	}
	fit <- survfit(Surv(futime, fustat) ~ risk, data = rt)
	#print(surv_median(fit))
		
	#绘制生存曲线
	surPlot=ggsurvplot(fit, 
		           data=rt,
		           conf.int=T,
		           pval=pValue,
		           pval.size=6,
		           surv.median.line = "hv",
		           legend.title="Risk",
		           legend.labs=c("High risk", "Low risk"),
		           xlab="Time(years)",
		           break.time.by = 1,
		           palette=c("red", "blue"),
		           risk.table=TRUE,
		       	   risk.table.title="",
		           risk.table.col = "strata",
		           risk.table.height=.25)
	pdf(file=outFile, onefile=FALSE, width=6.5, height=5.5)
	print(surPlot)
	dev.off()
}

#调用函数,绘制生存曲线
bioSurvival(inputFile="risk.txt", outFile="survival.pdf")

14、绘制不同的风险曲线

#install.packages("pheatmap")


library(pheatmap)       #引用包
setwd("C:\\Users\\Administrator\\Desktop\\geneimmune\\28riskPlot")      #设置工作目录

#定义风险曲线的函数
bioRiskPlot=function(inputFile=null, riskScoreFile=null, survStatFile=null, heatmapFile=null){
	rt=read.table(inputFile, header=T, sep="\t", check.names=F, row.names=1)    #读取输入文件
	rt=rt[order(rt$riskScore),]      #按照风险打分对样品排序
		
	#绘制风险曲线
	riskClass=rt[,"risk"]
	lowLength=length(riskClass[riskClass=="low"])
	highLength=length(riskClass[riskClass=="high"])
	lowMax=max(rt$riskScore[riskClass=="low"])
	line=rt[,"riskScore"]
	line[line>10]=10
	pdf(file=riskScoreFile, width=7, height=4)
	plot(line, type="p", pch=20,
		 xlab="Patients (increasing risk socre)", ylab="Risk score",
		 col=c(rep("green",lowLength),rep("red",highLength)) )
	abline(h=lowMax,v=lowLength,lty=2)
	legend("topleft", c("High risk", "Low Risk"),bty="n",pch=19,col=c("red","green"),cex=1.2)
	dev.off()
		
	#绘制生存状态图
	color=as.vector(rt$fustat)
	color[color==1]="red"
	color[color==0]="green"
	pdf(file=survStatFile, width=7, height=4)
	plot(rt$futime, pch=19,
		 xlab="Patients (increasing risk socre)", ylab="Survival time (years)",
		 col=color)
	legend("topleft", c("Dead", "Alive"),bty="n",pch=19,col=c("red","green"),cex=1.2)
	abline(v=lowLength,lty=2)
	dev.off()
		
	#绘制风险热图
	rt1=rt[c(3:(ncol(rt)-2))]
	rt1=t(rt1)
	annotation=data.frame(type=rt[,ncol(rt)])
	rownames(annotation)=rownames(rt)
	pdf(file=heatmapFile, width=7, height=4)
	pheatmap(rt1, 
		     annotation=annotation, 
		     cluster_cols = FALSE,
		     cluster_rows = FALSE,
		     show_colnames = F,
		     scale="row",
		     color = colorRampPalette(c(rep("green",3), "white", rep("red",3)))(50),
		     fontsize_col=3,
		     fontsize=7,
		     fontsize_row=8)
	dev.off()
}
#调用函数,绘制风险曲线
bioRiskPlot(inputFile="risk.txt",
            riskScoreFile="riskScore.pdf",
            survStatFile="survStat.pdf",
            heatmapFile="heatmap.pdf")

15、绘制不同风险因素森林图比较,并进行预后分析

#install.packages('survival')


library(survival)       #引用包
setwd("C:\\Users\\Administrator\\Desktop\\geneimmune\\29indep")     #设置工作目录

############绘制森林图函数############
bioForest=function(coxFile=null, forestFile=null, forestCol=null){
	#读取输入文件
	rt <- read.table(coxFile, header=T, sep="\t", check.names=F, row.names=1)
	gene <- rownames(rt)
	hr <- sprintf("%.3f",rt$"HR")
	hrLow  <- sprintf("%.3f",rt$"HR.95L")
	hrHigh <- sprintf("%.3f",rt$"HR.95H")
	Hazard.ratio <- paste0(hr,"(",hrLow,"-",hrHigh,")")
	pVal <- ifelse(rt$pvalue<0.001, "<0.001", sprintf("%.3f", rt$pvalue))
		
	#输出图形
	pdf(file=forestFile, width=6.5, height=4.5)
	n <- nrow(rt)
	nRow <- n+1
	ylim <- c(1,nRow)
	layout(matrix(c(1,2),nc=2),width=c(3,2.5))
		
	#绘制森林图左边的临床信息
	xlim = c(0,3)
	par(mar=c(4,2.5,2,1))
	plot(1,xlim=xlim,ylim=ylim,type="n",axes=F,xlab="",ylab="")
	text.cex=0.8
	text(0,n:1,gene,adj=0,cex=text.cex)
	text(1.5-0.5*0.2,n:1,pVal,adj=1,cex=text.cex);text(1.5-0.5*0.2,n+1,'pvalue',cex=text.cex,font=2,adj=1)
	text(3.1,n:1,Hazard.ratio,adj=1,cex=text.cex);text(3.1,n+1,'Hazard ratio',cex=text.cex,font=2,adj=1)
		
	#绘制右边的森林图
	par(mar=c(4,1,2,1),mgp=c(2,0.5,0))
	xlim = c(0,max(as.numeric(hrLow),as.numeric(hrHigh)))
	plot(1,xlim=xlim,ylim=ylim,type="n",axes=F,ylab="",xaxs="i",xlab="Hazard ratio")
	arrows(as.numeric(hrLow),n:1,as.numeric(hrHigh),n:1,angle=90,code=3,length=0.05,col="darkblue",lwd=3)
	abline(v=1, col="black", lty=2, lwd=2)
	boxcolor = ifelse(as.numeric(hr) > 1, forestCol, forestCol)
	points(as.numeric(hr), n:1, pch = 15, col = boxcolor, cex=2)
	axis(1)
	dev.off()
}
############绘制森林图函数############

#定义独立预后分析函数
indep=function(riskFile=null,cliFile=null,uniOutFile=null,multiOutFile=null,uniForest=null,multiForest=null){
	risk=read.table(riskFile, header=T, sep="\t", check.names=F, row.names=1)    #读取风险文件
	cli=read.table(cliFile, header=T, sep="\t", check.names=F, row.names=1)      #读取临床文件
	
	#数据合并
	sameSample=intersect(row.names(cli),row.names(risk))
	risk=risk[sameSample,]
	cli=cli[sameSample,]
	rt=cbind(futime=risk[,1], fustat=risk[,2], cli, riskScore=risk[,(ncol(risk)-1)])
	
	#单因素独立预后分析
	uniTab=data.frame()
	for(i in colnames(rt[,3:ncol(rt)])){
		 cox <- coxph(Surv(futime, fustat) ~ rt[,i], data = rt)
		 coxSummary = summary(cox)
		 uniTab=rbind(uniTab,
		              cbind(id=i,
		              HR=coxSummary$conf.int[,"exp(coef)"],
		              HR.95L=coxSummary$conf.int[,"lower .95"],
		              HR.95H=coxSummary$conf.int[,"upper .95"],
		              pvalue=coxSummary$coefficients[,"Pr(>|z|)"])
		              )
	}
	write.table(uniTab,file=uniOutFile,sep="\t",row.names=F,quote=F)
	bioForest(coxFile=uniOutFile, forestFile=uniForest, forestCol="green")

	#多因素独立预后分析
	uniTab=uniTab[as.numeric(uniTab[,"pvalue"])<1,]
	rt1=rt[,c("futime", "fustat", as.vector(uniTab[,"id"]))]
	multiCox=coxph(Surv(futime, fustat) ~ ., data = rt1)
	multiCoxSum=summary(multiCox)
	multiTab=data.frame()
	multiTab=cbind(
	             HR=multiCoxSum$conf.int[,"exp(coef)"],
	             HR.95L=multiCoxSum$conf.int[,"lower .95"],
	             HR.95H=multiCoxSum$conf.int[,"upper .95"],
	             pvalue=multiCoxSum$coefficients[,"Pr(>|z|)"])
	multiTab=cbind(id=row.names(multiTab),multiTab)
	write.table(multiTab,file=multiOutFile,sep="\t",row.names=F,quote=F)
	bioForest(coxFile=multiOutFile, forestFile=multiForest, forestCol="red")
}

#独立预后分析
indep(riskFile="risk.txt",
      cliFile="clinical.txt",
      uniOutFile="uniCox.txt",
      multiOutFile="multiCox.txt",
      uniForest="uniForest.pdf",
      multiForest="multiForest.pdf")

16、绘制ROC曲线

#install.packages("survival")
#install.packages("survminer")
#install.packages("timeROC")


#引用包
library(survival)
library(survminer)
library(timeROC)
riskFile="risk.txt"        #风险输入文件
cliFile="clinical.txt"     #临床数据文件
setwd("C:\\Users\\Administrator\\Desktop\\geneimmune\\30ROC")     #修改工作目录

#读取风险输入文件
risk=read.table(riskFile, header=T, sep="\t", check.names=F, row.names=1)
risk=risk[,c("futime", "fustat", "riskScore")]

#读取临床数据文件
cli=read.table(cliFile, header=T, sep="\t", check.names=F, row.names=1)

#合并数据
samSample=intersect(row.names(risk), row.names(cli))
risk1=risk[samSample,,drop=F]
cli=cli[samSample,,drop=F]
rt=cbind(risk1, cli)

#定义颜色
bioCol=rainbow(ncol(rt)-1, s=0.9, v=0.9)

#绘制ROC曲线
predictTime=3     #定义预测年限
aucText=c()
pdf(file="ROC.pdf", width=6, height=6)

#绘制风险得分的ROC曲线
i=3
ROC_rt=timeROC(T=rt$futime,
               delta=rt$fustat,
               marker=rt[,i], cause=1,
               weighting='aalen',
               times=c(predictTime),ROC=TRUE)
plot(ROC_rt, time=predictTime, col=bioCol[i-2], title=FALSE, lwd=2)
aucText=c(paste0("Risk", ", AUC=", sprintf("%.3f",ROC_rt$AUC[2])))
abline(0,1)

#对临床数据进行循环,绘制临床数据的ROC曲线
for(i in 4:ncol(rt)){
	ROC_rt=timeROC(T=rt$futime,
				   delta=rt$fustat,
				   marker=rt[,i], cause=1,
				   weighting='aalen',
				   times=c(predictTime),ROC=TRUE)
	plot(ROC_rt, time=predictTime, col=bioCol[i-2], title=FALSE, lwd=2, add=TRUE)
	aucText=c(aucText, paste0(colnames(rt)[i],", AUC=",sprintf("%.3f",ROC_rt$AUC[2])))
}

#绘制联合的ROC曲线
multiCox=coxph(Surv(futime, fustat) ~ ., data = rt)
score=predict(multiCox, type="risk", newdata=rt)
ROC_rt=timeROC(T=rt$futime,
			   delta=rt$fustat,
			   marker=score,cause=1,
			   weighting='aalen',
			   times=c(predictTime),ROC=TRUE)
plot(ROC_rt, time=predictTime, col=bioCol[ncol(rt)-1], title=FALSE, lwd=2, add=TRUE)
aucText=c(aucText, paste0("Risk+Clinical", ", AUC=", sprintf("%.3f",ROC_rt$AUC[2])))

#绘制图例,得到ROC曲线下的面积
legend("bottomright", aucText,lwd=2,bty="n",col=bioCol[1:(ncol(rt)-1)])
dev.off()

17、绘制列线图与校准曲线

#install.packages("rms")


library(rms)              #引用包
riskFile="risk.txt"       #风险输入文件
cliFile="clinical.txt"    #临床数据文件
setwd("C:\\Users\\Administrator\\Desktop\\生信文章\\geneimmune\\31Nomo")     #修改工作目录

#读取风险输入文件
risk=read.table(riskFile, header=T, sep="\t", check.names=F, row.names=1)
risk=risk[,c("futime", "fustat", "riskScore")]

#读取临床数据文件
cli=read.table(cliFile, header=T, sep="\t", check.names=F, row.names=1)

#合并数据
samSample=intersect(row.names(risk), row.names(cli))
risk1=risk[samSample,,drop=F]
cli=cli[samSample,,drop=F]
rt=cbind(risk1, cli)
paste(colnames(rt)[3:ncol(rt)],collapse="+")

#数据打包
dd <- datadist(rt)
options(datadist="dd")
#生成函数
f <- cph(Surv(futime, fustat) ~ riskScore+Age+Gender+Grade+Stage+T+M+N, x=T, y=T, surv=T, data=rt, time.inc=1)
surv <- Survival(f)
#建立nomogram
nom <- nomogram(f, fun=list(function(x) surv(1, x), function(x) surv(2, x), function(x) surv(3, x)), 
    lp=F, funlabel=c("1-year survival", "2-year survival", "3-year survival"), 
    maxscale=100, 
    fun.at=c(0.99, 0.9, 0.8, 0.7, 0.5, 0.3,0.1,0.01))  

#nomogram可视化
pdf(file="Nomogram.pdf",height=8.5,width=9.5)
plot(nom)
dev.off()

#calibration curve
time=3    #预测年限
f <- cph(Surv(futime, fustat) ~ riskScore+Age+Gender+Grade+Stage+T+M+N, x=T, y=T, surv=T, data=rt, time.inc=time)
cal <- calibrate(f, cmethod="KM", method="boot", u=time, m=75, B=1000)
pdf(file="calibration.pdf", width=9.5, height=8.5)
plot(cal,
	 xlab=paste0("Nomogram-Predicted Probability of ", time, "-Year OS"),
	 ylab=paste0("Actual ", time, "-Year OS(proportion)"),
	 col="red", sub=T)
dev.off()

18、最后在ICGC肿瘤数据库中再次验证该模型的准确性,代码与以上类似

三、总结:

这里只展示了研究的部分内容,有部分研究结果是使用从在线数据库分析获取的,比如中性粒细胞和CD8阳性T细胞的变化情况。研究整体说明的问题是抑制HSP90β可能会通过调节筛选出的免疫基因来改善肝细胞癌患者的预后,后续可以增加部分验证实验来证明研究结果,通过抑制HSP90β来研究不同免疫基因的改变情况。更详细的研究内容可通过以下访问链接获取:

Gitee码云:

https://gitee.com/wydilearn/effect-of-hsp90-ab1-on-the-local-immune-response-of-hepatocellular-carcinoma

Github:

https://github.com/wydilearn/Effect-of-HSP90AB1-on-the-local-immune-response-of-hepatocellular-carcinoma

posted @ 2022-09-11 20:33  wydilearn  阅读(588)  评论(0编辑  收藏  举报