南京网络赛J-Sum【数论】
A square-free integer is an integer which is indivisible by any square number except 11. For example, 6 = 2 \cdot 36=2⋅3 is square-free, but 12 = 2^2 \cdot 312=22⋅3 is not, because 2^222 is a square number. Some integers could be decomposed into product of two square-free integers, there may be more than one decomposition ways. For example, 6 = 1\cdot 6=6 \cdot 1=2\cdot 3=3\cdot 2, n=ab6=1⋅6=6⋅1=2⋅3=3⋅2,n=ab and n=ban=ba are considered different if a \not = ba̸=b. f(n)f(n) is the number of decomposition ways that n=abn=ab such that aa and bb are square-free integers. The problem is calculating \sum_{i = 1}^nf(i)∑i=1nf(i).
Input
The first line contains an integer T(T\le 20)T(T≤20), denoting the number of test cases.
For each test case, there first line has a integer n(n \le 2\cdot 10^7)n(n≤2⋅107).
Output
For each test case, print the answer \sum_{i = 1}^n f(i)∑i=1nf(i).
Hint
\sum_{i = 1}^8 f(i)=f(1)+ \cdots +f(8)∑i=18f(i)=f(1)+⋯+f(8)
=1+2+2+1+2+4+2+0=14=1+2+2+1+2+4+2+0=14.
样例输入复制
2 5 8
样例输出复制
8 14
题目来源
用素数筛类似的方法先把f的表打出来
一个数可以分解成 n = p1^a1 * p2^a2 * p3^a3.......其中p1,p2,p3...都是素数
如果a1,a2,a3...中有一个大于2,那么f(n)=0因为不管怎样组合都会使一个因子是平方数
如果a1,a2,a3...中有m个是1,剩下的都是2 那么只有那些是2的就必须分开,剩下的每一个数都有2中可能所以f(n)=2^m
打表 prime[p] = p prime[i*p]=1
对于比i小的所有素数 i是作为他们的倍数进行处理的
如果i%prime[j]==0 而且i%(prime[j]*prime[j])==0那么i*prime[j]肯定指数有一个大于2了 f[i*prime[j]] = 0
如果i%prime[j]==0 那么i*prime[j]要少掉一个数可以选择 所以f[i*prime[j]] = f[i] / 2
如果上面一个都不是 那么i*prime[j]之后就多了一个数可以选择 所以f[i*prime[j]] = f[i] * 2
不加if(i%prime[j]==0)break;会T,还没想懂为什么....
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<vector>
#include<set>
//#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long LL;
int t, n, cnt;
const int maxn = 2e7 + 5;
int f[maxn], prime[maxn];
void table()
{
memset(f, 0, sizeof(f));
memset(prime, 0, sizeof(prime));
cnt = 0;
f[1] = 1;
for(int i = 2; i < maxn; i++){
if(!prime[i]){
prime[cnt++] = i;
f[i] = 2;
}
for(int j = 0; j < cnt && prime[j] * i < maxn; j++){
prime[prime[j] * i] = 1;
if(i % prime[j] == 0){
if(i % (prime[j] * prime[j]) == 0){
f[i * prime[j]] = 0;
}
else{
f[i * prime[j]] = f[i] / 2;
}
}
else{
f[i * prime[j]] = f[i] * 2;
}
if(i % prime[j] == 0)break;
}
}
}
int main()
{
cin>>t;
table();
while(t--){
scanf("%d", &n);
LL ans = 0;
for(int i = 1; i <= n; i++){
ans += f[i];
}
printf("%lld\n", ans);
}
return 0;
}