promsql 基本使用
PromQL 基本使用
PromQL (Prometheus Query Language) 是 Prometheus 自己开发的数据查询 DSL 语言,语言表现力非常丰富,内置函数很多,在日常数据可视化以及rule 告警中都会使用到它。
查询结果类型
PromQL 查询结果主要有 3 种类型:
- 瞬时数据 (Instant vector): 包含一组时序,每个时序只有一个点,例如:
http_requests_total
- 区间数据 (Range vector): 包含一组时序,每个时序有多个点,例如:
http_requests_total[5m]
- 纯量数据 (Scalar): 纯量只有一个数字,没有时序,例如:
count(http_requests_total)
查询条件
Prometheus 存储的是时序数据,而它的时序是由名字和一组标签构成的,其实名字也可以写出标签的形式,例如 http_requests_total
等价于 {name=”http_requests_total”}。
一个简单的查询相当于是对各种标签的筛选,例如:
http_requests_total{code="200"}// 表示查询名字为 http_requests_total,code 为 "200" 的数据
查询条件支持正则匹配,例如:
http_requests_total{code!="200"}// 表示查询 code 不为 "200" 的数据http_requests_total{code=~"2.."}// 表示查询 code 为 "2xx" 的数据http_requests_total{code!~"2.."}// 表示查询 code 不为 "2xx" 的数据
操作符
Prometheus 查询语句中,支持常见的各种表达式操作符,例如
算术运算符:
支持的算术运算符有 +,-,*,/,%,^
, 例如 http_requests_total * 2
表示将 http_requests_total 所有数据2倍。
比较运算符:
支持的比较运算符有 ==,!=,>,<,>=,<=
, 例如 http_requests_total > 100
表示 http_requests_total 结果中大于 100 的数据。
逻辑运算符:
支持的逻辑运算符有 and,or,unless
, 例如 http_requests_total == 5 or http_requests_total == 2
表示 http_requests_total 结果中等于 5 或者 2 的数据。
聚合运算符:
支持的聚合运算符有 sum,min,max,avg,stddev,stdvar,count,count_values,bottomk,topk,quantile,
, 例如 max(http_requests_total)
表示 http_requests_total 结果中最大的数据。
注意Prometheus 的运算符也有优先级,它们遵从(^)> (*, /, %) > (+, -) > (==, !=, <=, <, >=, >) > (and, unless) > (or) 的原则。
-
without用于从计算结果中移除列举的标签,而保留其它标签。by则正好相反,结果向量中只保留列出的标签,其余标签则移除。通过without和by可以按照样本的问题对数据进行聚合
-
rate()
-
此函数计算整个采样周期内每秒的增长率。
例如:rate(http_requests_total[5m]) 得出的是HTTP在5分钟窗口内,平均每秒的请求率。作为最常见的函数,它以可预测的每秒输出单位产生平滑的rate。
-
-
irate()
- 即 "瞬时rate",此函数和rate()一样,计算每秒的增长率,但只对规定采样周期内的最后两个样本进行计算,而忽略前面所有样本
-
increase()
- increase(http_requests_total[5m]) 得出的是5分钟的采样周期内处理完成的HTTP请求的增长量
示例
increase(flink_jobmanager_job_numberOfFailedCheckpoints{env="prod-exclusive",projectCode="platform-v4",type="Flink"}[1h]) ##flink_jobmanager_job_numberOfFailedCheckpoints 1小时的增长量
位移操作 offset
http_requests_total offset 5m
当前时间点往前5分钟时间数据
http_requests_total[5m] offset 5m
当前时间点前的5分钟为结束点,再往前5分钟为开始点时间段内的数据
参考文档
https://prometheus.io/docs/prometheus/latest/querying/functions/