mongodb的分片(2)
在上一片博客,详细说明了mongodb的分片搭建的详细过程:分片搭建
在这里会说一些分片的维护与操作!
在集群搭建完,我们使用了sh.status()查看分片之后的数据,如下:
#连接的是mongos路由 [root@test1 bin]# ./mongo --port 27017 mongos> sh.status() --- Sharding Status --- sharding version: { "_id" : 1, "minCompatibleVersion" : 5, "currentVersion" : 6, "clusterId" : ObjectId("5be2a93b4c4972e711620a02") } shards: #显示的是分片的数据库 { "_id" : "shard1", "host" : "shard1/10.0.102.202:30001,test4:30001", "state" : 1 } { "_id" : "shard2", "host" : "shard2/10.0.102.220:30002,test3:30002", "state" : 1 } { "_id" : "shard3", "host" : "shard3/10.0.102.202:30003,test2:30003", "state" : 1 } active mongoses: #mongodb的版本号 "3.4.2" : 1 autosplit: #是否开启自动分片 Currently enabled: yes balancer: #均衡器(会在后面解释) Currently enabled: yes Currently running: no Balancer lock taken at Wed Nov 07 2018 18:26:23 GMT+0800 (CST) by ConfigServer:Balancer Failed balancer rounds in last 5 attempts: 0 Migration Results for the last 24 hours: 4 : Success databases: #分片的数据 { "_id" : "mytest", "primary" : "shard2", "partitioned" : true } mytest.test shard key: { "id" : 1 } #分片键 unique: false #是否唯一 balancing: true #是否均衡 chunks: #每个分片含有数据的块数 ,后面详细列出了数据在每个分片的块的范围! shard1 3 shard2 2 shard3 2 { "id" : { "$minKey" : 1 } } -->> { "id" : 2 } on : shard1 Timestamp(5, 1) { "id" : 2 } -->> { "id" : 22 } on : shard3 Timestamp(3, 0) { "id" : 22 } -->> { "id" : 171218 } on : shard2 Timestamp(4, 1) { "id" : 171218 } -->> { "id" : 373212 } on : shard2 Timestamp(3, 3) { "id" : 373212 } -->> { "id" : 544408 } on : shard1 Timestamp(4, 2) { "id" : 544408 } -->> { "id" : 742999 } on : shard1 Timestamp(4, 3) { "id" : 742999 } -->> { "id" : { "$maxKey" : 1 } } on : shard3 Timestamp(5, 0) mongos>
检查分片,还可以连接到配置服务器,查看分片信息!
shard_cfg:PRIMARY> show dbs; admin 0.000GB config 0.001GB local 0.001GB shard_cfg:PRIMARY> use config switched to db config shard_cfg:PRIMARY> show tables; #库中的文档会在下面详细介绍 actionlog changelog chunks collections databases lockpings locks migrations mongos shards tags version
shard_cfg:PRIMARY> db.chunks.count() #共有7个块
7
shard_cfg:PRIMARY> db.chunks.find().limit(1).pretty() #查看第一个块的信息
{
"_id" : "mytest.test-id_MinKey",
"lastmod" : Timestamp(5, 1),
"lastmodEpoch" : ObjectId("5be2ce5986b5988b373c7cca"),
"ns" : "mytest.test", #命名空间
"min" : {
"id" : { "$minKey" : 1 } #分片键的最小值
},
"max" : { #分片键的最大值
"id" : 2
},
"shard" : "shard1" #在哪个分片
}
#用这个命令的统计信息和再mongos上面使用sh.status()的信息时一样的。
#可以直接查看某个分片有多少个数据块
shard_cfg:PRIMARY> db.chunks.find({"shard":"shard1"}).count()
3
shard_cfg:PRIMARY> db.chunks.find({"shard":"shard2"}).count()
2
shard_cfg:PRIMARY> db.chunks.find({"shard":"shard3"}).count()
2
mongodb会使每个分片尽量保持均衡的数据。
#每个分片集群中含有的数据数目,【这个算均衡吧,毕竟每条文档只有几个字节,ok这不重要,只要知道是均衡的就可以】 shard1:PRIMARY> db.test.count() 369788 shard2:PRIMARY> db.test.count() 373190 shard3:PRIMARY> db.test.count() 257022
mongodb保持数据在没给分片均衡,主要依赖于分割与迁移!
分割是把一个数据块分割为2个更小数据块的过程。它只会在数据块大小超过最大限制的时候才会发生,目前默认是64MB。分割是必须的,因为数据块太大就难以在整个集群中分布。
迁移就是在分片之间移动数据的过程。当某些分片服务器包含的数据块数量大大超过其他分片服务器时就会触发迁移过程,这个触发器叫做迁移回合。在一个迁移回合中,
数据块从某些分片服务器迁移到其他分片服务器,直到集群看起来相对平衡为止。
在配置服务器中有一个changelog集合,通过这个集合,我们可以查看mongodb发生的分割和移动次数:
shard_cfg:PRIMARY> db.changelog.find({what: "split"}).count() #发生了多少次分割(因为只第一次批量插入了数据,因此没有分割) 0 shard_cfg:PRIMARY> db.changelog.find({what: "moveChunk.commit"}).count() #发生迁移的次数 4
#再一次插入上面的数据,来观察分割与迁移 【这次插入2千万条数据,会很慢】
mongos> use mytest
switched to db mytest
mongos> for(var i = 1; i < 2000000; i++){
... db.test.save({id: i, name: "test2"})
... }
WriteResult({ "nInserted" : 1 })
#查看此时的分片状态
mongos> sh.status()
--- Sharding Status ---
sharding version: {
"_id" : 1,
"minCompatibleVersion" : 5,
"currentVersion" : 6,
"clusterId" : ObjectId("5be2a93b4c4972e711620a02")
}
shards:
{ "_id" : "shard1", "host" : "shard1/10.0.102.202:30001,test4:30001", "state" : 1 }
{ "_id" : "shard2", "host" : "shard2/10.0.102.220:30002,test3:30002", "state" : 1 }
{ "_id" : "shard3", "host" : "shard3/10.0.102.202:30003,test2:30003", "state" : 1 }
active mongoses:
"3.4.2" : 1
autosplit:
Currently enabled: yes
balancer:
Currently enabled: yes
Currently running: no
Balancer lock taken at Wed Nov 07 2018 18:26:23 GMT+0800 (CST) by ConfigServer:Balancer
Failed balancer rounds in last 5 attempts: 0
Migration Results for the last 24 hours:
7 : Success
1 : Failed with error 'aborted', from shard2 to shard3
databases:
{ "_id" : "mytest", "primary" : "shard2", "partitioned" : true }
mytest.test
shard key: { "id" : 1 }
unique: false
balancing: true
chunks:
shard1 5
shard2 4
shard3 4
{ "id" : { "$minKey" : 1 } } -->> { "id" : 2 } on : shard1 Timestamp(8, 1)
{ "id" : 2 } -->> { "id" : 22 } on : shard3 Timestamp(7, 1)
{ "id" : 22 } -->> { "id" : 171218 } on : shard2 Timestamp(6, 1)
{ "id" : 171218 } -->> { "id" : 256816 } on : shard3 Timestamp(6, 0)
{ "id" : 256816 } -->> { "id" : 342414 } on : shard2 Timestamp(5, 3)
{ "id" : 342414 } -->> { "id" : 373212 } on : shard2 Timestamp(5, 4)
{ "id" : 373212 } -->> { "id" : 544408 } on : shard1 Timestamp(4, 2)
{ "id" : 544408 } -->> { "id" : 742999 } on : shard1 Timestamp(4, 3)
{ "id" : 742999 } -->> { "id" : 828597 } on : shard3 Timestamp(6, 2)
{ "id" : 828597 } -->> { "id" : 1000000 } on : shard3 Timestamp(6, 3)
{ "id" : 1000000 } -->> { "id" : 1249999 } on : shard1 Timestamp(7, 2)
{ "id" : 1249999 } -->> { "id" : 1603980 } on : shard1 Timestamp(7, 3)
{ "id" : 1603980 } -->> { "id" : { "$maxKey" : 1 } } on : shard2 Timestamp(8, 0)
#查看是否发生了迁移与分割
shard_cfg:PRIMARY> use config
switched to db config
shard_cfg:PRIMARY> db.changelog.find({what: "split"}).count()
0
shard_cfg:PRIMARY> db.changelog.find({what: "moveChunk.commit"}).count()
7
#发生了7次迁移,没有发生分割
查询路由
在查询数据时,如果查询包含分片键,则mongos就可以迅速咨询数据块来确定属于哪个分片,这叫做目标查询。如果查询没有分片键,就必须访问所有的分片服务器以填充查询,这个过程叫做全局查询。
插入定位到某个分片时,如果分片响应很慢则集群也会很慢。这时候就可以使用索引来优化查询。
在分片集群中,索引有以下几个要点:
- 每个分片维护自己的索引。当在分片集合上声明索引时,每个分片都会为自己的集合部分定义单独的索引。
- 它遵循分片集合在每个分片上应该拥有的相同的索引原理。如果不是,就无法保证查询性能的一致性。
- 分片集合只允许在_id字段和分片键之间建立唯一索引。禁止其他地方建立唯一索引,因为强制唯一索引性需要在分片之间进行通信,这是由mongodb分片集群底层工作机制决定的。
对集合中分片的操作
添加分片就是使用sh.addShard()命令,用这种方式添加新的分片服务器时,要知道迁移数据需要花费时间。可以期望每分钟迁移100~200M的数据。因此添加分片的时机应该在集群的性能耗尽之前,一旦索引和工作集无法加载到ram里,应用就会出现卡死。特别是应用需要高读/写并发吞吐量的时候,这时候数据库的io比较高,就会降低读写速度,此时添加分片就比较困难!
删除分片
在我们创建的集群中有三个分片用于数据的存储,信息如下:
shards: { "_id" : "shard1", "host" : "shard1/10.0.102.202:30001,test4:30001", "state" : 1 } { "_id" : "shard2", "host" : "shard2/10.0.102.220:30002,test3:30002", "state" : 1 } { "_id" : "shard3", "host" : "shard3/10.0.102.202:30003,test2:30003", "state" : 1 } 此时各个分片对应的数据块如下: chunks: shard1 5 shard2 4 shard3 4 ###########假设现在我们要删除最后一个分片集合,也就是删除shard3. mongos> sh.setBalancerState("true") #保证均衡器是开着的 { "ok" : 1 } mongos> use admin #进入admin库中 switched to db admin mongos> db.runCommand({removeshard: "shard3/10.0.102.202:30003,test2:30003"}) #删除分片 { "msg" : "draining started successfully", "state" : "started", "shard" : "shard3", "note" : "you need to drop or movePrimary these databases", "dbsToMove" : [ ], "ok" : 1 } #表示数据正在迁移到其他的库上 ##再次执行这条命令查看迁移的状态 mongos> db.runCommand({removeshard: "shard3/10.0.102.202:30003,test2:30003"}) { "msg" : "draining ongoing", "state" : "ongoing", "remaining" : { "chunks" : NumberLong(4), "dbs" : NumberLong(0) }, "note" : "you need to drop or movePrimary these databases", "dbsToMove" : [ ], "ok" : 1 } #这里遇见一个问题note提示说明shard3分片是整个集群的主分片【插入数据的时候数据先插入这个主分片然后,再迁移到其他的分片】,但是查看config库,发现主分片不是这个! mongos> use config switched to db config mongos> db.databases.find() #这里显示主分片是shard2 { "_id" : "mytest", "primary" : "shard2", "partitioned" : true } 【转移主分片的命令如下 mongos> db.runCommand({movePrimary: "mytest", to : "shard1"}) { "primary" : "shard1:shard1/10.0.102.202:30001,test4:30001", "ok" : 1 } 】 #然后删除就一直在这里,暂时未找到原因
config库信息说明:
config库中的信息,在mongos服务器上和配置服务器上的信息时一样的
mongos> use config #库中的数据和congisvr服务器中的数据是一样的! switched to db config mongos> show tables; actionlog changelog chunks collections databases lockpings locks migrations mongos shards tags version mongos> db.shards.find() #查看分片信息 { "_id" : "shard1", "host" : "shard1/10.0.102.202:30001,test4:30001", "state" : 1 } { "_id" : "shard2", "host" : "shard2/10.0.102.220:30002,test3:30002", "state" : 1 } { "_id" : "shard3", "host" : "shard3/10.0.102.202:30003,test2:30003", "state" : 1 } mongos> db.databases.find() #查看分片中数据库的信息,因为只有一个没有test库 { "_id" : "mytest", "primary" : "shard2", "partitioned" : true } #primary:说明这个分片是整个集群的主分片,插入数据的时候数据先插入这个主分片然后,再迁移到其他的分片。 mongos> db.collections.find().pretty() #分片的集合信息 { "_id" : "mytest.test", "lastmodEpoch" : ObjectId("5be4d47fd271124654f1411e"), "lastmod" : ISODate("1970-02-19T17:02:47.412Z"), "dropped" : false, "key" : { #分片键 "id" : 1 }, "unique" : false #分片键是否是唯一的 } mongos> db.mongos.find().pretty() #查看集群中所有的mongos路由信息 { "_id" : "test1:27017", "ping" : ISODate("2018-11-09T02:18:35.796Z"), "up" : NumberLong(69215), "waiting" : true, "mongoVersion" : "3.4.2" } { "_id" : "test3:27017", "ping" : ISODate("2018-11-09T02:18:35.594Z"), "up" : NumberLong(68335), "waiting" : true, "mongoVersion" : "3.4.2" } mongos> db.locks.find().pretty() #均衡器锁的信息:config.locks,记录所有集群范围的锁,可得知哪个mongos是均衡器 { "_id" : "balancer", "state" : 2, #0非活动状态、1尝试得到锁,但还没得到,2表示正在进行均衡 "ts" : ObjectId("5be3df32c3d597874a374d77"), "who" : "ConfigServer:Balancer", "process" : "ConfigServer", "when" : ISODate("2018-11-08T07:01:56.119Z"), "why" : "CSRS Balancer" #集群均衡器 } { "_id" : "mytest", "state" : 0, "ts" : ObjectId("5be4d7eed271124654f14137"), "who" : "test1:27017:1541660698:8505579169655688671:conn5", "process" : "test1:27017:1541660698:8505579169655688671", "when" : ISODate("2018-11-09T00:42:22.797Z"), "why" : "enableSharding" #分片功能 } { "_id" : "mytest.test", "state" : 0, "ts" : ObjectId("5be3df32c3d597874a374d77"), "who" : "ConfigServer:Balancer", "process" : "ConfigServer", "when" : ISODate("2018-11-09T01:51:38.065Z"), "why" : "Migrating chunk(s) in collection mytest.test" #合并块 } mongos> db.chunks.find().count() #总共有211个块 211 mongos> db.chunks.find().limit(1).pretty() #查看其中的一个块信息 { "_id" : "mytest.test-id_MinKey", "lastmod" : Timestamp(2, 0), "lastmodEpoch" : ObjectId("5be4d47fd271124654f1411e"), "ns" : "mytest.test", "min" : { "id" : { "$minKey" : 1 } }, "max" : { "id" : 250001 }, "shard" : "shard1" } mongos> db.changelog.find().count() #记录的是分片操作日志 1167 mongos> db.changelog.find().limit(1).pretty() #查看一个日志的文档 { "_id" : "test1-2018-11-08T15:05:38.318+0800-5be3e042c3d597874a3758b9", "server" : "test1", "clientAddr" : "10.0.102.220:22561", "time" : ISODate("2018-11-08T07:05:38.318Z"), "what" : "addShard", #可以根据what的动作不同来筛选出需要的信息。 "ns" : "", "details" : { "name" : "shard1", "host" : "shard1/test4:30001,10.0.102.202:30001" } } mongos> db.changelog.find({what: "split"}).count() #分割发生的次数 0 mongos> db.changelog.find({what: "moveChunk.commit"}).count() #移动块的次数 140 mongos>db.adminCommand({"connPoolStats":1}) #查看分片的网络连接数据
不知道为什么,我搭建的这个集群没有settings这个集合 ,mongodb3.4以及mongodb3.6的官方文档都有这个集合,不知道为什么这里没有?
但是可以使用一个如下命令查看块的信息!
mongos> db.chunks.stats() { "sharded" : false, "primary" : "config", "ns" : "config.chunks", "size" : 34746, "count" : 211, "avgObjSize" : 164, "storageSize" : 53248, "capped" : false, "wiredTiger" : { "metadata" : { "formatVersion" : 1 }, "creationString" : "access_pattern_hint=none,allocation_size=4KB,app_metadata=(formatVersion=1),block_allocation=best,block_compressor=snappy,cache_resident=false,checksum=on,colgroups=,collator=,columns=,dictionary=0,encryption=(keyid=,name=),exclusive=false,extractor=,format=btree,huffman_key=,huffman_value=,ignore_in_memory_cache_size=false,immutable=false,internal_item_max=0,internal_key_max=0,internal_key_truncate=true,internal_page_max=4KB,key_format=q,key_gap=10,leaf_item_max=0,leaf_key_max=0,leaf_page_max=32KB,leaf_value_max=64MB,log=(enabled=true),lsm=(auto_throttle=true,bloom=true,bloom_bit_count=16,bloom_config=,bloom_hash_count=8,bloom_oldest=false,chunk_count_limit=0,chunk_max=5GB,chunk_size=10MB,merge_max=15,merge_min=0),memory_page_max=10m,os_cache_dirty_max=0,os_cache_max=0,prefix_compression=false,prefix_compression_min=4,source=,split_deepen_min_child=0,split_deepen_per_child=0,split_pct=90,type=file,value_format=u", "type" : "file", "uri" : "statistics:table:collection-14--1825262580711858791", "LSM" : { "bloom filter false positives" : 0, "bloom filter hits" : 0, "bloom filter misses" : 0, "bloom filter pages evicted from cache" : 0, "bloom filter pages read into cache" : 0, "bloom filters in the LSM tree" : 0, "chunks in the LSM tree" : 0, "highest merge generation in the LSM tree" : 0, "queries that could have benefited from a Bloom filter that did not exist" : 0, "sleep for LSM checkpoint throttle" : 0, "sleep for LSM merge throttle" : 0, "total size of bloom filters" : 0 }, "block-manager" : { "allocations requiring file extension" : 11, "blocks allocated" : 180, "blocks freed" : 50, "checkpoint size" : 12288, "file allocation unit size" : 4096, "file bytes available for reuse" : 24576, "file magic number" : 120897, "file major version number" : 1, "file size in bytes" : 53248, "minor version number" : 0 }, "btree" : { "btree checkpoint generation" : 1335, "column-store fixed-size leaf pages" : 0, "column-store internal pages" : 0, "column-store variable-size RLE encoded values" : 0, "column-store variable-size deleted values" : 0, "column-store variable-size leaf pages" : 0, "fixed-record size" : 0, "maximum internal page key size" : 368, "maximum internal page size" : 4096, "maximum leaf page key size" : 2867, "maximum leaf page size" : 32768, "maximum leaf page value size" : 67108864, "maximum tree depth" : 3, "number of key/value pairs" : 0, "overflow pages" : 0, "pages rewritten by compaction" : 0, "row-store internal pages" : 0, "row-store leaf pages" : 0 }, "cache" : { "bytes currently in the cache" : 80421, "bytes read into cache" : 0, "bytes written from cache" : 1194155, "checkpoint blocked page eviction" : 0, "data source pages selected for eviction unable to be evicted" : 0, "hazard pointer blocked page eviction" : 0, "in-memory page passed criteria to be split" : 0, "in-memory page splits" : 0, "internal pages evicted" : 0, "internal pages split during eviction" : 0, "leaf pages split during eviction" : 0, "modified pages evicted" : 0, "overflow pages read into cache" : 0, "overflow values cached in memory" : 0, "page split during eviction deepened the tree" : 0, "page written requiring lookaside records" : 0, "pages read into cache" : 0, "pages read into cache requiring lookaside entries" : 0, "pages requested from the cache" : 5640, "pages written from cache" : 95, "pages written requiring in-memory restoration" : 0, "unmodified pages evicted" : 0 }, "cache_walk" : { "Average difference between current eviction generation when the page was last considered" : 0, "Average on-disk page image size seen" : 0, "Clean pages currently in cache" : 0, "Current eviction generation" : 0, "Dirty pages currently in cache" : 0, "Entries in the root page" : 0, "Internal pages currently in cache" : 0, "Leaf pages currently in cache" : 0, "Maximum difference between current eviction generation when the page was last considered" : 0, "Maximum page size seen" : 0, "Minimum on-disk page image size seen" : 0, "On-disk page image sizes smaller than a single allocation unit" : 0, "Pages created in memory and never written" : 0, "Pages currently queued for eviction" : 0, "Pages that could not be queued for eviction" : 0, "Refs skipped during cache traversal" : 0, "Size of the root page" : 0, "Total number of pages currently in cache" : 0 }, "compression" : { "compressed pages read" : 0, "compressed pages written" : 52, "page written failed to compress" : 0, "page written was too small to compress" : 43, "raw compression call failed, additional data available" : 0, "raw compression call failed, no additional data available" : 0, "raw compression call succeeded" : 0 }, "cursor" : { "bulk-loaded cursor-insert calls" : 0, "create calls" : 19, "cursor-insert key and value bytes inserted" : 89436, "cursor-remove key bytes removed" : 0, "cursor-update value bytes updated" : 0, "insert calls" : 538, "next calls" : 669, "prev calls" : 1, "remove calls" : 0, "reset calls" : 5658, "restarted searches" : 0, "search calls" : 6051, "search near calls" : 0, "truncate calls" : 0, "update calls" : 0 }, "reconciliation" : { "dictionary matches" : 0, "fast-path pages deleted" : 0, "internal page key bytes discarded using suffix compression" : 21, "internal page multi-block writes" : 0, "internal-page overflow keys" : 0, "leaf page key bytes discarded using prefix compression" : 0, "leaf page multi-block writes" : 10, "leaf-page overflow keys" : 0, "maximum blocks required for a page" : 0, "overflow values written" : 0, "page checksum matches" : 1, "page reconciliation calls" : 86, "page reconciliation calls for eviction" : 0, "pages deleted" : 0 }, "session" : { "object compaction" : 0, "open cursor count" : 2 }, "transaction" : { "update conflicts" : 0 } }, "nindexes" : 4, "totalIndexSize" : 147456, "indexSizes" : { "_id_" : 36864, "ns_1_min_1" : 36864, "ns_1_shard_1_min_1" : 36864, "ns_1_lastmod_1" : 36864 }, "ok" : 1 }
分片键的选择:
在通过mongs向分片集群写入数据时,数据会首先写到集群的primary分片,然后再启动迁移块,把数据块尽量均衡的迁移到其他的分片。mongodb是根据分片键的值组成的块来迁移数据,并最终把数据均衡的分布在每个分片上。分片键一旦选定在集群中是不可改变的。
mongodb使用分片键的范围对集合中数据进行分块。分片键的选择会影响分片集群平衡器创建和分发块。这会影响分片集群中的整体性能和效率。
在选择分片键时要规避以下的问题:
- 热点 某些分片键会导致所有的读和写操作都在单个数据块或单个分片上。这可能导致单个分片服务器严重不堪重负,而其他分片服务器闲置,无所事事。
- 不可分割数据块 过于粗粒度的分片键可能导致许多文档使用相同的分片键。因为分片是基于分片键值的范围,所以意味着这些文档不能被分割为多个数据块,这个最终会闲置mongdb均匀分布数据的能力。
- 槽糕的定位 可以均匀的分布写操作,但是分片键与某些查询没有关联,也会导致性能很差。
在上面的例子中,我们选择了id这个自增的分片键,这样的结果就是新插入的数据全部属于同一个数据块,也就是每一个新的文档都会被写入到同一个分片中,这时候并不能分散写的压力,并且mongodb在写入数据的同时,mongodb为保证各个分片上数据的均衡,会同时迁移数据块,这样就更加大了单个分片的压力,加剧了性能的恶化!但是使用自增的块,比较好的一点是,使用范围查询比较快速一点。
使用哈希值分片,告诉mongodb使用哈希函数的结果作为分片键,而不是直接使用分片键。哈希函数用来产生随机结果,它可以确保插入更加均匀地分布在集群中。但是这意味着范围扫描需要扫描多个分片。
mongos> db.bar.ensureIndex({"files_id":"hashed"}) mongos> sh.enableSharding("foo") { "ok" : 1 } mongos> sh.shardCollection("foo.fs.chunks",{"files_id":"hashed"}) { "collectionsharded" : " foo.fs.chunks ", "ok" : 1 }
组合键:
在选择分片时需要考虑如何定位读取数据,如何更好的分布数据,如何在应用中高效地分割和迁移数据。
有时候没有单独的片键选择时,可以选择组合键来使用,一般是一个粗粒度的键+一个细粒度的键。
标签分片:
给每个分片打上tag,然后指定范围的数据直接插入到对应的tag上即可!
mongos > sh.addShardTag("shard0000", "T") mongos > sh.addShardTag("shard0001", "Q") mongos > sh.addShardTag("shard0002", "Q") mongos> sh.addTagRange("foo.ips",{ "ip": "010.000.000.000 ", … , "ip": "011.000.000.000 "}}, "T") mongos> sh.addTagRange("foo.ips",{ "ip": "011.000.000.000 ", … , "ip": "012.000.000.000 "}}, "Q")
【数据摘自: 分片键选择】
备份分片集群
备份需要注意:
- 备份分片集群数据的时候,要注意的第一件事情就是可能发生数据迁移。这意味,除非备份是在同一个时间点,否则一定会丢失数据。
- 备份分片集群时,也必须备份配置服务器元数据。因此,可以指定单配置服务器备份,因为所有的配置服务器的数据是一样的。
- 特别注意,以上的两个备份,需要设置禁止数据块迁移之后再做!
mongos> use config switched to db config mongos> sh.stopBalancer() #禁用均衡器 mongos> use config switched to db config mongos> sh.startBalancer() #开启均衡器
【分片集群中删除的分片的那个问题尚未解决?】
mongos没有fialvoer功能,但是官方建议把mongos与应用服务器部署在一起,可以有多个mongos!
mongos的高可用【暂缺】