查找

一、学习总结

1.1查找的思维导图

1.2 查找学习体会

在学习完查找后,了解了线性表的查找,树表的查找,哈希表的查找,其中哈希表的查找较为难以理解,还需多加深入学习。

2.PTA实验作业

2.1 题目1:6-2 是否二叉搜索树

2.2 设计思路(伪代码或流程图)

2.3 代码截图

 2.4 PTA提交列表说明

2.1 题目2:6-3 二叉搜索树中的最近公共祖先

2.2 设计思路(伪代码或流程图)

 

  2.3 代码截图

2.4 PTA提交列表说明

 

 

 

 刚开始条件没有考虑周全没考虑到两节点之一是答案,两节点是兄弟等条件。

2.1 题目3:7-1 QQ帐户的申请与登陆

2.2 设计思路(伪代码或流程图)

 

 2.3 代码截图

 

 2.4 PTA提交列表说明

 

 这题用到了map的用法,由于对于map用法不是很了解并且不能掌握如何应用,就参考了其他同学的做法。

3.截图本周题目集的PTA最后排名

3.1 PTA排名

 

 

 4. 阅读代码

 斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的。他要求开始表中记录的个数为某个斐波那契数小1,及n=F(k)-1;

 开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1),比较结果也分为三种

  1)相等,mid位置的元素即为所求

  2)>,low=mid+1,k-=2;

  说明:low=mid+1说明待查找的元素在[mid+1,high]范围内,k-=2 说明范围[mid+1,high]内的元素个数为n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1个,所以可以递归的应用斐波那契查找。

  3)<,high=mid-1,k-=1。

  说明:low=mid+1说明待查找的元素在[low,mid-1]范围内,k-=1 说明范围[low,mid-1]内的元素个数为F(k-1)-1个,所以可以递归 的应用斐波那契查找。

  复杂度分析:最坏情况下,时间复杂度为O(log2n),且其期望复杂度也为O(log2n)。

  C++实现源码:

// 斐波那契查找.cpp 

#include "stdafx.h"
#include <memory>
#include  <iostream>
using namespace std;

const int max_size=20;//斐波那契数组的长度

/*构造一个斐波那契数组*/ 
void Fibonacci(int * F)
{
    F[0]=0;
    F[1]=1;
    for(int i=2;i<max_size;++i)
        F[i]=F[i-1]+F[i-2];
}

/*定义斐波那契查找法*/  
int FibonacciSearch(int *a, int n, int key)  //a为要查找的数组,n为要查找的数组长度,key为要查找的关键字
{
  int low=0;
  int high=n-1;
  
  int F[max_size];
  Fibonacci(F);//构造一个斐波那契数组F 

  int k=0;
  while(n>F[k]-1)//计算n位于斐波那契数列的位置
      ++k;

  int  * temp;//将数组a扩展到F[k]-1的长度
  temp=new int [F[k]-1];
  memcpy(temp,a,n*sizeof(int));

  for(int i=n;i<F[k]-1;++i)
     temp[i]=a[n-1];
  
  while(low<=high)
  {
    int mid=low+F[k-1]-1;
    if(key<temp[mid])
    {
      high=mid-1;
      k-=1;
    }
    else if(key>temp[mid])
    {
     low=mid+1;
     k-=2;
    }
    else
    {
       if(mid<n)
           return mid; //若相等则说明mid即为查找到的位置
       else
           return n-1; //若mid>=n则说明是扩展的数值,返回n-1
    }
  }  
  delete [] temp;
  return -1;
}

int main()
{
    int a[] = {0,16,24,35,47,59,62,73,88,99};
    int key=100;
    int index=FibonacciSearch(a,sizeof(a)/sizeof(int),key);
    cout<<key<<" is located at:"<<index;
    return 0;
}

 

 

posted on 2018-05-27 15:02  啊哈yy  阅读(193)  评论(0编辑  收藏  举报