【Deep Learning】L1W4作业

本文为吴恩达 Deep Learning 作业,深层神经网络,识别猫


获得数据


主要算法

模型结构:

​ 2 层神经网络:LINEAR -> RELU -> LINEAR -> SIGMOID

​ L 层神经网络: [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID


初始化

def initialize_parameters_deep(layer_dims):
    np.random.seed(1)
    parameters = {}
    L = len(layer_dims)  # number of layers in the network
    
    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) / np.sqrt(layer_dims[l - 1])  # 重点
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))  # 重点
        assert (parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l - 1]))
        assert (parameters['b' + str(l)].shape == (layer_dims[l], 1))
    return parameters
  • 初始化 W 时,不需要 *0.01,因为最开始使用 ReLU

向前传播

向前传播:

\[Z^{[l]} = W^{[l]}A^{[l-1]}+b^{[l]} \]

def linear_forward(A, W, b):
    Z = np.dot(W, A) + b  # 重点
    assert (Z.shape == (W.shape[0], A.shape[1]))
    cache = (A, W, b)
    return Z, cache

正向激活:

\[A^{[l]} = g(Z^{[l]}) = g(W^{[l]}A^{[l-1]}+b^{[l]}) \]

def linear_activation_forward(A_prev, W, b, activation):
    A, linear_cache, activation_cache = 0, 0, 0
    if activation == "sigmoid":
        # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = sigmoid(Z)
    elif activation == "relu":
        # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = relu(Z)

    assert (A.shape == (W.shape[0], A_prev.shape[1]))
    cache = (linear_cache, activation_cache)
    return A, cache

L 层模型:

def L_model_forward(X, parameters):
    caches = []
    A = X
    L = len(parameters) // 2  # number of layers in the neural network

    # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
    for l in range(1, L):
        A_prev = A
        A, cache = linear_activation_forward(
            A_prev, parameters['W' + str(l)], parameters['b' + str(l)], "relu")  # 重点
        caches.append(cache)

    # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
    AL, cache = linear_activation_forward(
        A, parameters['W' + str(L)], parameters['b' + str(L)], "sigmoid")  # 重点
    caches.append(cache)

    assert (AL.shape == (1, X.shape[1]))
    return AL, caches

计算代价

  • AL 的维度是 \((1, m)\)Y 的维度是 \((1, m)\)

  • 计算代价的公式是:

    \[\frac{1}{m} \sum_{i = 1}^m(y^{(i)}\log a^{[l](i)} + (1-y^{(i)}) \log (1-a^{[l](i)})) \]

  • cost = (1. / m) * (-np.dot(Y, np.log(AL).T) - np.dot(1 - Y, np.log(1 - AL).T))cost = (-1. / m) * np.sum(Y * np.log(AL) + (1 - Y) * np.log(1 - AL), axis=1, keepdims=True) 等价。

def compute_cost(AL, Y):
    m = Y.shape[1]
    # Compute loss from aL and y.
    cost = (1. / m) * (-np.dot(Y, np.log(AL).T) - np.dot(1 - Y, np.log(1 - AL).T))  # 重点
    # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
    cost = np.squeeze(cost)  # 重点
    assert (cost.shape == ())
    return cost

反向传播

反向传播:

\[dW^{[l]} = \frac{1}{m}dZ^{[l]} \cdot A^{[l-1]\mathrm{T}} \\ db^{[l]} = \frac{1}{m} \sum_{i=1}^m dZ^{[l](i)} \\ dA^{[l-1]} = W^{[l]\mathrm{T}} \cdot dZ^{[l]} \]

def linear_backward(dZ, cache):
    A_prev, W, b = cache
    m = A_prev.shape[1]

    dW = 1. / m * np.dot(dZ, A_prev.T)  # 重点
    db = 1. / m * np.sum(dZ, axis=1, keepdims=True)  # 重点
    dA_prev = np.dot(W.T, dZ)  # 重点

    assert (dA_prev.shape == A_prev.shape)
    assert (dW.shape == W.shape)
    assert (db.shape == b.shape)

    return dA_prev, dW, db

反向激活:

\[dZ^{[l]} = dA^{[l]} * g^{[l]'}(Z^{[l]}) \]

def linear_activation_backward(dA, cache, activation):
    dA_prev, dW, db = 0, 0, 0
    linear_cache, activation_cache = cache
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)

    return dA_prev, dW, db

L 层模型:

\[dA^{[L]} = -(\frac{Y}{A^{}[L]}-\frac{1-Y}{1-A^{[L]}}) \]

def L_model_backward(AL, Y, caches):
    grads = {}
    L = len(caches)  # the number of layers
    m = AL.shape[1]
    Y = Y.reshape(AL.shape)  # after this line, Y is the same shape as AL

    # Initializing the backpropagation
    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))  # 重点

    # Lth layer (SIGMOID -> LINEAR) gradients.
    # Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
    current_cache = caches[L - 1]
    grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid")  # 重点

    for l in reversed(range(L - 1)):
        # lth layer: (RELU -> LINEAR) gradients.
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu")  # 重点
        grads["dA" + str(l + 1)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp

    return grads

更新

def update_parameters(parameters, grads, learning_rate):
    L = len(parameters) // 2  # number of layers in the neural network
    # Update rule for each parameter. Use a for loop.
    for l in range(L):
        parameters["W" + str(l + 1)] = parameters \
        	["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]  # 重点
        parameters["b" + str(l + 1)] = parameters \
        	["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]  # 重点
    return parameters

整合


2 层神经网络

def two_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=2500, print_cost=False):
    np.random.seed(1)
    grads = {}
    costs = []  # to keep track of the cost
    (n_x, n_h, n_y) = layers_dims

    parameters = initialize_parameters(n_x, n_h, n_y)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]

    for i in range(0, num_iterations):
        A1, cache1 = linear_activation_forward(X, W1, b1, activation="relu")
        A2, cache2 = linear_activation_forward(A1, W2, b2, activation="sigmoid")

        cost = compute_cost(A2, Y)

        dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
        dA1, dW2, db2 = linear_activation_backward(dA2, cache2, activation="sigmoid")
        dA0, dW1, db1 = linear_activation_backward(dA1, cache1, activation="relu")
        grads['dW1'] = dW1
        grads['db1'] = db1
        grads['dW2'] = dW2
        grads['db2'] = db2

        parameters = update_parameters(parameters, grads, learning_rate)
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]

        if print_cost and i % 100 == 0:
            print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
        if print_cost and i % 100 == 0:
            costs.append(cost)

    plt.plot(np.squeeze(costs))
    plt.ylabel('cost')
    plt.xlabel('iterations (per tens)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()

    return parameters

L 层神经网络

def L_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=2500, print_cost=False):
    np.random.seed(1)
    costs = []  # keep track of cost
    parameters = initialize_parameters_deep(layers_dims)

    for i in range(0, num_iterations):  # 重点
        AL, caches = L_model_forward(X, parameters)  # 重点
        cost = compute_cost(AL, Y)  # 重点
        grads = L_model_backward(AL, Y, caches)  # 重点
        parameters = update_parameters(parameters, grads, learning_rate)  # 重点

        if print_cost and i % 100 == 0:
            print("Cost after iteration %i: %f" % (i, cost))
        if print_cost and i % 100 == 0:
            costs.append(cost)

    plt.plot(np.squeeze(costs))
    plt.ylabel('cost')
    plt.xlabel('iterations (per tens)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()

    return parameters

预测

def predict(X, y, parameters):
    m = X.shape[1]
    probas, caches = L_model_forward(X, parameters)
    p = np.round(probas)
    print("Accuracy: " + str(np.sum((p == y) / m)))
    return p

main 函数

def main():
    train_x_orig, train_y, test_x_orig, test_y, classes = load_data()

    # The "-1" makes reshape flatten the remaining dimensions
    train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T
    test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T

    train_x = train_x_flatten / 255.
    test_x = test_x_flatten / 255.

    # parameters = two_layer_model(train_x, train_y, (12288, 7, 1), 0.0075, 2500, True)
    parameters = L_layer_model(train_x, train_y, (12288, 20, 7, 5, 1), 0.0075, 2500, True)
    pred_train = predict(train_x, train_y, parameters)
    pred_test = predict(test_x, test_y, parameters)
    print_mislabeled_images(classes, test_x, test_y, pred_test)

绘图

def print_mislabeled_images(classes, X, Y, p):
    a = p + Y
    mislabeled_indices = np.asarray(np.where(a == 1))
    plt.rcParams['figure.figsize'] = (40.0, 40.0)  # set default size of plots
    num_images = len(mislabeled_indices[0])
    for i in range(num_images):
        index = mislabeled_indices[1][i]
        plt.subplot(2, num_images, i + 1)
        plt.imshow(X[:, index].reshape(64, 64, 3), interpolation='nearest')
        plt.axis('off')
        plt.title("Prediction: " + classes[int(p[0, index])].decode("utf-8") + " \n Class: " + classes[Y[0, index]].decode("utf-8"))
    plt.show()

关于 Python


np

np.where

np.where(condition, x, y)
  • 当只有一个参数时,那个参数表示条件,当条件成立时,返回的是每个符合条件元素的坐标 (元组形式)。
  • 当有三个参数时,第一个参数表示条件,当条件成立时,返回 x;当条件不成立时,返回 y

np.asarray

np.asarray(a, dtype=None, order=None)
  • 将结构数据转化为 ndarray

plt

put.imshow

  • interpolation='nearest' 设置图片的模糊度,不是什么重要的事情
posted @ 2022-07-05 16:13  空白4869  阅读(56)  评论(0编辑  收藏  举报