【Deep Learning】L1W2作业

本文为吴恩达 Deep Learning 作业,逻辑回归分类器,识别猫


获得数据

H5 文件:

  • H5 文件是层次数据格式第5代的版本 (Hierarchical Data Format, HDF5),它是用于存储科学数据的一种文件格式和库文件。
  • H5 将文件结构简化成两个主要的对象类型:
    • 数据集 (dataset):同一类型数据的多维数组。
    • 组 (group):一种容器结构,可以包含数据集和其他组,若一个文件中存放了不同种类的数据集,这些数据集的管理就用到了组。

读取 H5 格式数据集:

def load_dataset():
    train_dataset = h5py.File('train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:])  # features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:])  # labels

    test_dataset = h5py.File('test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:])  # features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:])  # labels

    classes = np.array(test_dataset["list_classes"][:])  # 让 labels 人类可读, 或许

    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))

    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes

查看图片:

  • set_ytrain_set_ytest_set_y,是 \(1\)\(m\) 列的数组 (\(m\) 是样本数量),其中元素的值为 \(0\)\(1\),可以通过 classes 映射成 catnon-cat
def show_one(set_x_orig, set_y, classes, index):
    plt.imshow(set_x_orig[index])
    plt.show()
    print("y = " + str(set_y[:, index]) + ", it's a '"
          + classes[np.squeeze(set_y[:, index])].decode("utf-8") + "' picture.")

查看数据信息:

  • train_set_x_orig 的维度为 (m_train,num_px,num_px,3)
  • train_set_y 的维度为 (1, m_train)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
show_one(test_set_x_orig, test_set_y, classes, 5)
show_one(train_set_x_orig, train_set_y, classes, 3)

m_train = train_set_x_orig.shape[0]  # 训练集示例数量
m_test = test_set_x_orig.shape[0]  # 测试集示例数量
num_px = train_set_x_orig.shape[1]  # 训练图像的高度 = 训练图像的宽度

预处理

重塑矩阵:

  • 将维度为 (num_px,num_px,3) 的图片重塑为 (num_px * amp_px * 3, 1)
train_set_x_flatten = train_set_x_orig.reshape(m_train, -1).T
test_set_x_flatten = test_set_x_orig.reshape(m_test, -1).T

标准化数据:

train_set_x = train_set_x_flatten / 255.
test_set_x = test_set_x_flatten / 255.

\(sigmoid\) 函数:

def sigmoid(z):
    s = 1 / (1 + np.exp(-z))
    return s

主要算法


初始化

  • \(w\)\(n\)\(1\) 列零向量(train_set_x 也是 \(n\)\(1\) 列向量),\(b\) 为零。
# 将 w 初始化为 dim 维列向量, 将 b 初始化为 0
def initialize_with_zeros(dim):
    w = np.zeros((dim, 1))
    b = 0
    assert (w.shape == (dim, 1))
    assert (isinstance(b, float) or isinstance(b, int))
    return w, b

向前传播与计算代价

  • 依据《向量化逻辑回归的梯度下降结果》这一节的伪代码:
# 梯度 grads, 损失函数 cost
# 输入 X, 输出 Y, 参数 w, b, 中间变量 A, Z, 训练集数量 m
def propagate(w, b, X, Y):
    m = X.shape[1]
    Z = np.dot(w.T, X) + b
    A = sigmoid(Z)
    cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))
    dz = A - Y
    dw = 1 / m * np.dot(X, dz.T)
    db = 1 / m * np.sum(dz)
    assert (dw.shape == w.shape)
    assert (db.dtype == float)
    cost = np.squeeze(cost)
    assert (cost.shape == ())
    grads = {"dw": dw, "db": db}
    return grads, cost

反向传播与更新

  • um_iterations 是迭代次数,learning_rate 是学习因子。
  • 使用梯度下降法,通过训练集学习 \(w\)\(b\)
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost=False):
    costs = []
    for i in range(num_iterations):
        grads, cost = propagate(w, b, X, Y)
        dw = grads["dw"]
        db = grads["db"]
        w = w - learning_rate * dw
        b = b - learning_rate * db
        if i % 100 == 0:
            costs.append(cost)
        if print_cost and i % 100 == 0:
            print("Cost after iteration %i: %f" % (i, cost))
    params = {"w": w, "b": b}
    grads = {"dw": dw, "db": db}
    return params, grads, costs

结果


预测

  • 预测测试集的结果,\(w\)\(b\) 由训练集学习得到,\(X\) 是测试集。
def predict(w, b, X):
    m = X.shape[1]
    w = w.reshape(X.shape[0], 1)
    A = sigmoid(np.dot(w.T, X) + b)
    Y_prediction = (A > 0.5)
    assert (Y_prediction.shape == (1, m))
    return Y_prediction

整合

def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False):
    w, b = initialize_with_zeros(X_train.shape[0])
    parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
    w = parameters["w"]
    b = parameters["b"]
    Y_prediction_test = predict(w, b, X_test)
    Y_prediction_train = predict(w, b, X_train)
    print("train accuracy: {} %".
          format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    print("test accuracy: {} %".
          format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
    d = {"costs": costs,
         "Y_prediction_test": Y_prediction_test,
         "Y_prediction_train": Y_prediction_train,
         "w": w,
         "b": b,
         "learning_rate": learning_rate,
         "num_iterations": num_iterations}
    return d

main 函数

def main():
    train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()

    # train_set_x_orig 的维度为 (m_train,num_px,num_px,3)
    # train_set_y 的维度为 (1, m_train)
    m_train = train_set_x_orig.shape[0]  # 训练集示例数量
    m_test = test_set_x_orig.shape[0]  # 测试集示例数量
    num_px = train_set_x_orig.shape[1]  # 训练图像的高度 = 训练图像的宽度

    # 重塑矩阵
    # 将维度为 (num_px,num_px,3) 的图片重塑为 (num_px * amp_px * 3, 1)
    train_set_x_flatten = train_set_x_orig.reshape(m_train, -1).T
    test_set_x_flatten = test_set_x_orig.reshape(m_test, -1).T

    # 对数据集进行居中和标准化, 暂且简单的除以 255
    train_set_x = train_set_x_flatten / 255.
    test_set_x = test_set_x_flatten / 255.

    # 训练与测试
    d = model(train_set_x, train_set_y, test_set_x, test_set_y, 2000, 0.005, False)
    # 绘制图像
    costs = np.squeeze(d['costs'])
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations (per hundreds)')
    plt.title("Learning rate =" + str(d["learning_rate"]))
    plt.show()

拓展


学习因子的选择

learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
    print("learning rate is: " + str(i))
    models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, 1500, i, False)
    print('\n' + "-------------------------------------------------------" + '\n')

    for i in learning_rates:
        plt.plot(np.squeeze(models[str(i)]["costs"]), label=str(models[str(i)]["learning_rate"]))

    plt.ylabel('cost')
    plt.xlabel('iterations')
    legend = plt.legend(loc='upper right', shadow=True)
    frame = legend.get_frame()
    frame.set_facecolor('0.90')
    plt.show()

使用自己的图像

image = np.array(plt.imread('cat_in_iran.jpg'))
my_image = np.array(Image.fromarray(image).resize((num_px, num_px))).reshape((1, num_px * num_px * 3)).T
my_predicted_image = predict(d["w"], d["b"], my_image)
plt.imshow(image)
print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" +
      classes[int(np.squeeze(my_predicted_image)), ].decode("utf-8") + "\" picture.")

使用 sklearn

  • 结果不好, 不会搞,咕咕咕~
clf = LogisticRegressionCV(max_iter=2000, penalty='l1', solver='liblinear', tol=0.005)
    clf.fit(train_set_x.T, np.ravel(train_set_y.T))
    LR_predictions = clf.predict(train_set_x.T)
    print("train accuracy: {} %".
          format(100 - np.mean(np.abs(LR_predictions - train_set_y.T)) * 100))

关于 Python


plt

plt.legend

  • 设置图例,咕咕咕~

np

np.squeeze

  • 改变数组的维数,把维度为 1 的删去。

np.zeros

  • w = np.zeros((dim, 1)) 创建维度为 (dim, 1) 的零向量。

np.random.rand(d0, d1, d2, ......, dn)

  • 创建维度为 (d0, d1, d2, ......, dn) 的随机向量,取值在 \([0, 1)\)

np.random.randn(d0, d1, d2, ......, dn)

  • 创建维度为 (d0, d1, d2, ......, dn) 的随机向量,服从标准正态分布。

np.mean

  • 计算算术平均值。

参考

posted @ 2022-07-05 14:16  空白4869  阅读(50)  评论(0编辑  收藏  举报