mysql基础:SQL注入问题、视图、触发器、事务、隔离级别、MVCC多版本控制、存储过程、函数、流程控制、索引相关概念、索引数据结构、慢查询优化

一、SQL注入问题

SQL注入问题引入

我们在pycharm中使用pymysql模块执行mysql代码的时候会发现用占位符传输信息的时候若是按下方的代码输入内容,会出现下面的两个怪象。

sql = " insert into userinfo(name,pwd) values(%s,%s)" % (sign_name,sign_pwd)

sign_name = 'jason' -- kasdjksajd'
sign_pwd = ''

sign_name = 'xyz' or 1=1 -- aksdjasldj'
sign_pwd = ''

怪象1:输对用户名就可以登录成功
怪象2:不需要对的用户名和密码也可以登录成功

这时候pycharm会在报错信息中返回一个sql语句,内容如下:

select * from userinfo where name='jason' -- kasdjksajd' and pwd=''
select * from userinfo where name='xyz' or 1=1 -- aksdjasldj' and pwd='

讲解:

通过上面的语句,我们可以发现语句的中间出现了两个'--',而这个--符号的意思是注释的作用,因此就相当于执行了--符号前面的语句,后面的内容成了注释内容,这种情况就叫做SQL注入。

SQL注入概念和解决方案

  • 概念

SQL注入:利用特殊符号的组合产生特殊的含义,从而避开正常的业务逻辑

  • 解决方案

针对上述的SQL注入问题,核心在于手动拼接了关键数据,交给execute处理即可
sql = " select * from userinfo where name=%s and pwd=%s "
cursor.execute(sql, (username, password))

补充说明

我们也可以使用executemany来一次性处理多个数据,把多个数据填入下方的小括号的即可。

executemany(sql,[(),(),(),()...])

二、视图

视图就是通过查询得到一张虚拟表,然后保存下来,下次直接使用,通常用于连表操作得到的结果。语句如下:

create view teacher2course as
select * from teacher inner join course on teacher.tid = course.teacher_id;

注意事项

1.视图的表只能用来查询不能做其他增删改操作
2.视图尽量少用,会跟真正的表产生混淆,从而干扰操作者(使用show tables查看表名称或是进行其他操作的时候跟普通的表没有区别)。

三、触发器

定义

触发器是由事件来触发某个操作。当数据库执行这些事件时,就会激活触发器来执行相应的操作。这些事件称为触发条件,在MySQL中,有UPDATE,INSERT,和DELETE(即对表进行增、删、改)。

主要有六种情况:增前、增后、删前、删后、改前、改后(BEFORE INSERT、BEFORE DELETE、BEFORE UPDATE、AFTER INSERT、AFTER DELETE、AFTER UPDATE)。

代码

create trigger 触发器的名字 before/after insert/update/delete on 表名 for each row
begin
	sql语句
end

1.触发器命名有一定的规律

tri_before_insert_t1
tri_after_delete_t2
tri_after_update_t2

讲解:

这里我们发现第一部分名称就是tirgger关键字的前三个字母,第二部分名称是出发的状态,这部分名称由两部分组成,最后的一部分名称我们可以自定义。

2.临时修改SQL语句的结束符

  • 因为有些操作中需要使用分号,这时候就会出现冲突。
  • 这里我们用delimiter关键字修改结束符号,通过这种方式达到目的。

触发器实际应用

CREATE TABLE cmd (
    id INT PRIMARY KEY auto_increment,
    USER CHAR (32),
    priv CHAR (10),
    cmd CHAR (64),
    sub_time datetime, #提交时间
    success enum ('yes', 'no') #no代表执行失败
);

CREATE TABLE errlog (
    id INT PRIMARY KEY auto_increment,
    err_cmd CHAR (64),
    err_time datetime
);

delimiter $$  # 将mysql默认的结束符由;换成$$
create trigger tri_after_insert_cmd after insert on cmd for each row
begin
    if NEW.success = 'no' then  # 新记录都会被MySQL封装成NEW对象,如果新纪录中success的值为no就会把数据也记录到errlog表中
        insert into errlog(err_cmd,err_time) values(NEW.cmd,NEW.sub_time);
    end if;
end $$
delimiter ;  # 结束之后记得再改回来,不然后面结束符就都是$$了

#往表cmd中插入记录,触发触发器,根据IF的条件决定是否插入错误日志
INSERT INTO cmd (
    USER,
    priv,
    cmd,
    sub_time,
    success
)
VALUES
    ('kevin','0755','ls -l /etc',NOW(),'yes'),
    ('kevin','0755','cat /etc/passwd',NOW(),'no'),
    ('kevin','0755','useradd xxx',NOW(),'no'),
    ('kevin','0755','ps aux',NOW(),'yes');

# 查询errlog表记录
select * from errlog;
# 查看所有的触发器
show triggers;
# 删除触发器
drop trigger tri_after_insert_cmd;

四、事务

MySQL提供两种事务型存储引擎InnoDB和NDB cluster及第三方XtraDB、PBXT

事务的四大特性(ACID)

  • A:原子性

指事务是一个不可再分割的工作单位,事务中的操作要么都发生,要么都不发生。

特点:

1、事务是一个完整的操作,事务的各元素是不可分的。
2、事务中的所有元素必须作为一个整体提交或回滚。
3、如果事务中的任何元素失败,则整个事务将失败。

举例:

比如转账的时候,如果对方接收失败了,钱应该退回自己的账户中。让双方的数据都回到转账前的状态。

  • C:一致性

指在事务开始之前和事务结束以后,数据库的完整性约束没有被破坏。一致性与原子性是密切相关的。

特点:

1、当事务完成时,数据必须处于一致状态。
2、在事务开始前,数据库中存储的数据处于一致状态。
3、在正在进行的事务中,数据可能处于不一致的状态。
4、当事务成功完成时,数据必须再次回到已知的一致状态。

举例:

对银行转帐事务,不管事务成功还是失败,应该保证事务结束后表中A和B的存款总额跟事务执行前一致。

  • I:隔离性

指在并发环境中,当不同的事务同时操纵相同的数据时,每个事务都有各自的完整数据空间(多个事务之间彼此不干扰)。

特点:

1、对数据进行修改的所有并发事务是彼此隔离的,表明事务必须是独立的,它不应以任何方式依赖于或影响其他事务。
2、修改数据的事务可在另一个使用相同数据的事务开始之前访问
3、这些数据,或者在另一个使用相同数据的事务结束之后访问这些数据

  • D:持久性

持久性也称永久性,指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的,并不会被回滚。

特点:

1、指不管系统是否发生故障,事务处理的结果都是永久的。
2、一旦事务被提交,事务的效果会被永久地保留在数据库中。

代码

transaction是事务功能的关键字

create table user(
id int primary key auto_increment,
name char(32),
balance int
);

insert into user(name,balance)
values
('jason',1000),
('kevin',1000),
('tank',1000);

# 修改数据之前先开启事务操作
start transaction;

# 修改操作
update user set balance=900 where name='jason'; #买支付100元
update user set balance=1010 where name='kevin'; #中介拿走10元
update user set balance=1090 where name='tank'; #卖家拿到90元

# 回滚到上一个状态
rollback;

# 开启事务之后,只要没有执行commit操作,数据其实都没有真正刷新到硬盘
commit;

事务相关关键字

  事务(transaction)
  回退(rollback)
  提交(commit)
  保留点(savepoint)
	为了支持回退部分事务处理,必须能在事务处理块中合适的位置放置占位符,这样如果需要回退可以回退到某个占位符(保留点)
    创建占位符可以使用savepoint
    	savepoint sp01;
    回退到占位符地址
    	rollback to sp01;

保留点在执行rollback或者commit之后自动释放

事务之间的相互影响

1、脏读:一个事务读取了另一个事务未提交的数据,而这个数据是有可能回滚的。

2、不可重复读:一个事务内两个相同的查询却返回了不同数据。这是由于查询时系统中其他事务修改的提交而引起的。

3、幻读:一个事务对一个表中的数据进行了修改,这种修改涉及到表中的全部数据行。同时,另一个事务也修改这个表中的数据,这种修改是向表中插入一行新数据。那么,操作前一个事务的用户会发现表中还有没有修改的数据行,就好象发生了幻觉一样。

4、丢失更新:两个事务同时读取同一条记录,A先修改记录,B也修改记录(B不知道A修改过),B提交数据后B的修改结果覆盖了A的修改结果。

在SQL标准中定义了四种隔离级别,每一种级别都规定了一个事务中所做的修改
InnoDB支持所有隔离级别

设置隔离级别语句:

set transaction isolation level 级别

查询全局事务隔离级别

show global variables like '%isolation%';
SELECT @@global.tx_isolation;

1.read uncommitted(未提交读)
事务中的修改即使没有提交,对其他事务也都是可见的,事务可以读取未提交的数据,这一现象也称之为"脏读"
2.read committed(提交读)
大多数数据库系统默认的隔离级别
一个事务从开始直到提交之前所作的任何修改对其他事务都是不可见的,这种级别也叫做"不可重复读"
3.repeatable read(可重复读) # MySQL默认隔离级别
能够解决"脏读"问题,但是无法解决"幻读"
所谓幻读指的是当某个事务在读取某个范围内的记录时另外一个事务又在该范围内插入了新的记录,当之前的事务再次读取该范围的记录会产生幻行,InnoDB和XtraDB通过多版本并发控制(MVCC)及间隙锁策略解决该问题
4.serializable(可串行读)
强制事务串行执行,很少使用该级别

MVCC只能在read committed(提交读)、repeatable read(可重复读)两种隔离级别下工作,其他两个不兼容(read uncommitted:总是读取最新 serializable:所有的行都加锁)

InnoDB的MVCC通过在每行记录后面保存两个隐藏的列来实现MVCC
一个列保存了行的创建时间
一个列保存了行的过期时间(或删除时间) # 本质是系统版本号
每开始一个新的事务版本号都会自动递增,事务开始时刻的系统版本号会作为事务的版本号用来和查询到的每行记录版本号进行比较

例如
刚插入第一条数据的时候,我们默认事务id为1,实际是这样存储的
username

create_version

delete_version
​ jason 1
可以看到,我们在content列插入了kobe这条数据,在create_version这列存储了1,1是这次插入操作的事务id。
然后我们将jason修改为jason01,实际存储是这样的
​ username

create_version

delete_version

jason 1

2
​ jason01 2
可以看到,update的时候,会先将之前的数据delete_version标记为当前新的事务id,也就是2,然后将新数据写入,将新数据的create_version标记为新的事务id
当我们删除数据的时候,实际存储是这样的
​ username

create_version

delete_version
​ jason01 2

3

由此当我们查询一条记录的时候,只有满足以下两个条件的记录才会被显示出来:
1.当前事务id要大于或者等于当前行的create_version值,这表示在事务开始前这行数据已经存在了。
2.当前事务id要小于delete_version值,这表示在事务开始之后这行记录才被删除。

五、存储过程

存储过程是事先经过编译并存储在数据库中的一段SQL语句的集合,调用存储过程可以简化应用开发人员的很多工作,减少数据在数据库和应用服务器之间的传输,对于提高数据处理的效率是有好处的。

可以看成是python中的自定义函数。

# 无参函数
delimiter $$
create procedure p1()
begin
	select * from cmd;
end $$
delimiter ;

# 调用
call p1()


# 有参函数
delimiter $$
create procedure p2(
    in m int,  # in表示这个参数必须只能是传入不能被返回出去
    in n int,  
    out res int  # out表示这个参数可以被返回出去,还有一个inout表示即可以传入也可以被返回出去
)
begin
    select * from cmd where id > m and id < n;
    set res=0;  # 用来标志存储过程是否执行
end $$
delimiter ;

# 针对res需要先提前定义
set @res=10;  定义
select @res;  查看
call p1(1,5,@res)  调用
select @res  查看

"""
查看存储过程具体信息
	show create procedure pro1;
查看所有存储过程
	show procedure status;
删除存储过程
	drop procedure pro1;
"""

# 大前提:存储过程在哪个库下面创建的只能在对应的库下面才能使用!!!

# 1、直接在mysql中调用
set @res=10  # res的值是用来判断存储过程是否被执行成功的依据,所以需要先定义一个变量@res存储10
call p1(2,4,10);  # 报错
call p1(2,4,@res);  

# 查看结果
select @res;  # 执行成功,@res变量值发生了变化

# 2、在python程序中调用
pymysql链接mysql
产生的游表cursor.callproc('p1',(2,4,10))  # 内部原理:@_p1_0=2,@_p1_1=4,@_p1_2=10;
cursor.excute('select @_p1_2;')

六、函数

可以看成是python中的内置函数

ps:可以通过help 函数名 查看帮助信息!

1.移除指定字符

Trim、LTrim、RTrim

2.大小写转换

Lower、Upper

3.获取左右起始指定个数字符

Left、Right

4.返回读音相似值(对英文效果)

Soundex

eg:客户表中有一个顾客登记的用户名为J.Lee
但如果这是输入错误真名其实叫J.Lie,可以使用soundex匹配发音类似的

where Soundex(name)=Soundex('J.Lie')

5.日期格式:date_format

'''在MySQL中表示时间格式尽量采用2022-11-11形式'''
CREATE TABLE blog (
    id INT PRIMARY KEY auto_increment,
    NAME CHAR (32),
    sub_time datetime
);
INSERT INTO blog (NAME, sub_time)
VALUES
    ('第1篇','2015-03-01 11:31:21'),
    ('第2篇','2015-03-11 16:31:21'),
    ('第3篇','2016-07-01 10:21:31'),
    ('第4篇','2016-07-22 09:23:21'),
    ('第5篇','2016-07-23 10:11:11'),
    ('第6篇','2016-07-25 11:21:31'),
    ('第7篇','2017-03-01 15:33:21'),
    ('第8篇','2017-03-01 17:32:21'),
    ('第9篇','2017-03-01 18:31:21');
select date_format(sub_time,'%Y-%m'),count(id) from blog group by date_format(sub_time,'%Y-%m');

1.where Date(sub_time) = '2015-03-01'
2.where Year(sub_time)=2016 AND Month(sub_time)=07;
# 更多日期处理相关函数 
	adddate	增加一个日期 
	addtime	增加一个时间
	datediff计算两个日期差值

七、流程控制

# 分支结构
declare i int default 0;
IF i = 1 THEN
	SELECT 1;
ELSEIF i = 2 THEN
	SELECT 2;
ELSE
	SELECT 7;
END IF;

# 循环结构
DECLARE num INT ;
SET num = 0 ;
WHILE num < 10 DO
	SELECT num ;
	SET num = num + 1 ;
END WHILE ;

八、索引相关概念

1)索引就好比一本书的目录,它能让你更快的找到自己想要的内容
2)让获取的数据更有目的性,从而提高数据库检索数据的性能

MySQL索引主要有两种结构:B+Tree索引和Hash索引。

索引在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构

	* primary key
	* unique key
	* index key

1.上述的三个key都可以加快数据查询
2.primary key和unique key除了可以加快查询本身还自带限制条件而index key很单一就是用来加快数据查询
3.外键不属于索引键的范围 是用来建立关系的 与加快查询无关

索引加快查询的本质

	id int primary key auto_increment,
 	name varchar(32) unique,
  	province varchar(32)
 	age int
 	phone bigint
 	
	select name from userinfo where phone=18818888888;  # 一页页的翻
	select name from userinfo where id=99999;  # 按照目录确定页数找

索引可以加快数据查询 但是会降低增删的速度
通常情况下我们频繁使用某些字段查询数据
为了提升查询的速度可以将该字段建立索引

聚集索引(primary key)
主键、主键索引
辅助索引(unique,index)
除主键意外的都是辅助索引,辅助索引其实本质上也是用的聚集索引的数据来查询的(用的主键的数据)

覆盖索引

select name from user where name='jason';

所谓覆盖索引就是条件中的字段名和查看的字段名称相同

非覆盖索引

select age from user where name='jason';

九、索引数据结构

索引的底层其实是树结构>>>:树是计算机底层的数据结构

树有很多中类型

二叉树、b树、b+树、B*树......

二叉树

二叉树里面还可以细分成很多领域,我们简单的了解即可。

二叉树的特点:每个节点最多有2个分叉,左子树和右子树数据顺序左小右大。

img

B树(B-Tree)

MySQL的数据是存储在磁盘文件中的,查询数据时需要先把磁盘中的数据加载到内存中,磁盘IO操作非常耗时,所以我们优化的重点就是尽量减少磁盘IO操作,所以,我们应当尽量减少从磁盘中读取数据的次数。另外,从磁盘中读取数据时,都是按照磁盘块来读取的,并不是一条一条的读。如果我们能把尽量多的数据放进磁盘块中,那一次磁盘读取操作就会读取更多数据,那我们查找数据的时间也会大幅度降低。

如果我们用树这种数据结构作为索引的数据结构,那我们每查找一次数据就需要从磁盘中读取一个节点,也就是我们说的一个磁盘块。我们都知道平衡二叉树可是每个节点只存储一个键值和数据的。那说明什么?说明每个磁盘块仅仅存储一个键值和数据!那如果我们要存储海量的数据呢?

可以想象到二叉树的节点将会非常多,高度也会极其高,我们查找数据时也会进行很多次磁盘IO,我们查找数据的效率将会极低!

为了解决平衡二叉树的这个弊端,B树应运而生, B树是一种多叉平衡查找树,主要的特点是:

1、叶子节点都在同一层,叶子节点没有指针连接
2、B树的节点中存储着多个元素,每个内节点有多个分叉
3、节点中的元素包含键值和数据,节点中的键值从大到小排列

4、所有的节点都可以存放完整的数据

下面模拟下查找key为27的data的过程:

img

存在的一些问题:

  • B树中每个节点中包含key值以及data值,而每一个节点的存储空间是有限的(MySQL默认16K),如果data中存放的数据较大时,将会导致每个节点能存储的key的数量很小,所以当数据量很多,且每行数据量很大的时候,同样会导致树的高度变得很高,增大查询时的磁盘IO次数,进而影响查询效率。
  • 不支持范围查询的快速查找,而在实际的应用中,数据库范围查询的频率非常高,以下的一种情况是我查找10和35之间的数据,查找到15之后,需要回到根节点重新遍历查找,需要从根节点进行多次遍历,查询效率有待提高。

B+\B*树

只有叶子节点才会存放真正的数据 其他节点只存放索引数据

B+树

highlighter- css

B+叶子节点增加了指向其他叶子节点的指针

对比B树和B+树,我们发现二者主要存在以下几点不同的地方:

  • 数据都存放在叶子节点中
  • 非叶子节点只存储键值信息,不再存储数据
  • 所有叶子节点之间都有一个指针,指向下一个叶子节点,而且叶子节点之间使用双向指针连接,最底层的叶子节点形成了一个双向有序链表
等值查询

下面模拟下查找key为9的data的过程:

img

范围查询

下面模拟下查找key的范围为9到26这个范围的data的过程:

img

从上面的结果,我们可以知道B+树作为索引结构带来的好处:

  • 磁盘IO次数更少

  • 数据遍历更为方便

  • 查询性能更稳定

由于B+树优秀的结构特性,在MySQL中,存储引擎MyISAM和InnoDB的索引就采用了B+树的数据结构。

B*树

B*叶子节点和枝节点都有指向其他节点的指针

ps:

  • 辅助索引在查询数据的时候最会还是需要借助于聚集索引
  • 辅助索引叶子节点存放的是数据的主键值
  • 有时候就算采用索引字段查询数据 也可能不会走索引!!!

索引失效的几种情况

1.前导模糊查询不能利用索引(like '%XX'或者like '%XX%')

     'A%'就可以正常使用索引

.如果mysql估计使用全表扫描要比使用索引快,则不使用索引

3.OR前后存在非索引的列,索引失效

如果条件中有or,即使其中有条件带索引也不会使用(这也是为什么尽量少用or的原因)

要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引

4.普通索引的不等于不会走索引;如果是主键,则还是会走索引;如果是主键或索引是整数类型,则还是会走索引

5.组合索引最左前缀

    如果组合索引为:(name,email)

    name and email -- 使用索引

    name -- 使用索引

    email -- 不使用索引

6.is null可以使用索引,is not null无法使用索引

最好在设计表时设置NOT NULL约束,比如将INT类型的默认值设为0,将字符串默认值设为''。

7.计算、函数导致索引失效另外一种情况

#使用到了索引

explain select * from student_info where name like 'li%';

#未使用索引,花费时间更久

explain select * from student_info where LEFT(name,2)='li';

扩展:

如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引

#不会使用name的索引

explain select * from student_info where name=123;

#使用到索引

explain select * from student_info where name='123';

如上,name字段是VARCAHR类型的,但是比较的值是INT类型的,name的值会被隐式的转换为INT类型再比较,中间相当于有一个将字符串转为INT类型的函数。这也相当于是函数导致的索引失效。

8.字符集不统一

统一使用utf8mb4( 5.5.3 版本以上支持 ) 兼容性更好,统一字符集可以避免由于字符集转换产生的乱码。不同的 字符集 进行比较前需要进行 转换 会造成索引失效。。

ps:最好能记三个左右的特殊情况

十、慢查询优化

我们使用explain方法来查看语句的索引扫描类型。

1、Explain是什么?

  • 主键自动建立唯一索引。
  • 频繁作为查询条件的字段应该创建索引。
  • 查询中与其他表关联的字段,外键关系建立索引。
  • 单键/组合索引的选择问题,组合索引性价比更高。
  • 查询中排序的字段,排序字段若通过索引去访问将大大提高排序速度。
  • 查询中统计或者分组字段。

2、Explain能干什么?

  1. 表的读取顺序
  2. 数据读取操作的操作类型
  3. 哪些索引可以使用
  4. 哪些索引可以被实际使用
  5. 表之间的引用
  6. 每张表有多少行被优化器查询

3、怎么用

  • explain + SQL
  • 执行计划包含的信息
+----+-------------+-------+-------+---------------+-----+---------+------+------+-------+
| id | select_type | table | type  | possible_keys | key | key_len | ref  | rows | Extra |
+----+-------------+-------+-------+---------------+-----+---------+------+------+-------+

4、常见的索引扫描类型:

1)index
2)range
3)ref
4)eq_ref
5)const
6)system
7)null

索引扫描类型详解

  • 生产中,mysql在使用全表扫描时的性能是极其差的,所以MySQL尽量避免出现全表扫描
  • 从上到下,性能从最差到最好,我们认为至少要达到range级别

index:Full Index Scan,index与ALL区别为index类型只遍历索引树。
range:索引范围扫描,对索引的扫描开始于某一点,返回匹配值域的行。显而易见的索引范围扫描是带有between或者where子句里带有<,>查询。

mysql> alter table city add index idx_city(population);
mysql> explain select * from city where population>30000000;

ref:使用非唯一索引扫描或者唯一索引的前缀扫描,返回匹配某个单独值的记录行。

mysql> alter table city drop key idx_code;
mysql> explain select * from city where countrycode='chn';
mysql> explain select * from city where countrycode in ('CHN','USA');
mysql> explain select * from city where countrycode='CHN' union all select * from city where countrycode='USA';

eq_ref:类似ref,区别就在使用的索引是唯一索引,对于每个索引键值,表中只有一条记录匹配,简单来说,就是多表连接中使用primary key或者 unique key作为关联条件A

join B
on A.sid=B.sid

const、system:当MySQL对查询某部分进行优化,并转换为一个常量时,使用这些类型访问。

如将主键置于where列表中,MySQL就能将该查询转换为一个常量

mysql> explain select * from city where id=1000;

NULL:MySQL在优化过程中分解语句,执行时甚至不用访问表或索引,例如从一个索引列里选取最小值可以通过单独索引查找完成。

mysql> explain select * from city where id=1000000000000000000000000000;

Extra(扩展)
Using temporary
Using filesort 使用了默认的文件排序(如果使用了索引,会避免这类排序)
Using join buffer

如果出现Using filesort请检查order by ,group by ,distinct,join 条件列上没有索引

mysql> explain select * from city where countrycode='CHN' order by population;

当order by语句中出现Using filesort,那就尽量让排序值在where条件中出现

mysql> explain select * from city where population>30000000 order by population;
mysql> select * from city where population=2870300 order by population;

key_len: 越小越好

  • 前缀索引去控制

rows: 越小越好

posted @ 2022-11-29 21:40  wwwxxx123  阅读(21)  评论(0编辑  收藏  举报