point-position2
双站异面直线法定位坐标:
此为初始版本。可以正确计算结果。
但是,计算行列式使用的是Eigen库,下版本处理直接计算。
没有考虑两直线共面交点情况,下版本解决。
// point-position2.cpp : 定义控制台应用程序的入口点。 #include "stdafx.h" #include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" #include <opencv2/nonfree/features2d.hpp> #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/nonfree/nonfree.hpp" #include "opencv2/legacy/legacy.hpp" #include<Eigen/Core> #include <Eigen/Dense> #include<math.h> using namespace cv; int main( int argc, char** argv ) { Mat img_1 = imread("book_in_scene.png"); Mat img_2 = imread("book2.png"); if( !img_1.data || !img_2.data ) { std::cout<< " --(!) Error reading images " << std::endl; return -1; } //-- Step 1: Detect the keypoints using SURF Detector int minHessian = 400; SiftFeatureDetector detector( minHessian ); //SurfFeatureDetector detector( minHessian ); vector<KeyPoint> keypoints_1, keypoints_2; detector.detect( img_1, keypoints_1 ); detector.detect( img_2, keypoints_2 ); //-- Step 2: Calculate descriptors (feature vectors) SiftDescriptorExtractor extractor; //SurfDescriptorExtractor extractor; Mat descriptors_1, descriptors_2; extractor.compute( img_1, keypoints_1, descriptors_1 ); extractor.compute( img_2, keypoints_2, descriptors_2 ); //-- Step 3: Matching descriptor vectors using FLANN matcher FlannBasedMatcher matcher; std::vector< DMatch > matches; matcher.match( descriptors_1, descriptors_2, matches ); double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints for( int i = 0; i < descriptors_1.rows; i++ ) { double dist = matches[i].distance; if( dist < min_dist ) min_dist = dist; if( dist > max_dist ) max_dist = dist; } //printf("-- Max dist : %f \n", max_dist ); //printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist ) //-- PS.- radiusMatch can also be used here. std::vector< DMatch > good_matches; for( int i = 0; i < descriptors_1.rows; i++ ) { if( matches[i].distance < 2*min_dist ) { good_matches.push_back( matches[i]); } } //-- Draw only "good" matches Mat img_matches; drawMatches( img_1, keypoints_1, img_2, keypoints_2, good_matches, img_matches ); //-- Show detected matches //imshow( "Good Matches", img_matches ); //imwrite("Lena_match_surf.jpg",img_matches); //imwrite("Lena_match_sift.jpg",img_matches); //good_matches[i].queryIdx保存着第一张图片匹配点的序号,keypoints_1[good_matches[i].queryIdx].pt.x 为该序号对应的点的x坐标。y坐标同理 //good_matches[i].trainIdx保存着第二张图片匹配点的序号,keypoints_2[good_matches[i].trainIdx].pt.x 为为该序号对应的点的x坐标。y坐标同理 printf( "--Keypoint 1:%f,%f: %d -- Keypoint 2:%f,%f: %d \n", keypoints_1[good_matches[0].queryIdx].pt.x,keypoints_1[good_matches[0].queryIdx].pt.y,good_matches[0].queryIdx, keypoints_2[good_matches[0].trainIdx].pt.x,keypoints_2[good_matches[0].trainIdx].pt.y,good_matches[0].trainIdx ); /*_______________________________________________________________________________________________________________________________*/ double x,y,X,Y,alpha,gamma;//像面坐标(x,y)和图像尺寸(X,Y)以及成像视场角(alpha,gamma) double x1,y1,z1,x2,y2,z2;//双站坐标 double alpha1,gamma1;//双站俯仰角和偏转角 double alpha2,gamma2; //赋予初始值 alpha1=45; gamma1=45; alpha2=270; gamma2=45; x1=0,y1=0,z1=0; x2=0,y2=200,z2=0; double pi=16*(atan(1.0/5))-4*atan(1.0/239);//精确定义圆周率 std::cout<<"pi为:"<<pi<<std::endl; alpha1=alpha1*pi/180;//角度弧度转换 gamma1=gamma1*pi/180; alpha2=alpha2*pi/180; gamma2=gamma2*pi/180; x=keypoints_1[good_matches[0].queryIdx].pt.x;//目标点坐标由匹配所得 y=keypoints_1[good_matches[0].queryIdx].pt.y; std::cout<<"cos(alpha1)为:"<<cos(alpha1)<<std::endl; std::cout<<"cos(gamma1)为:"<<cos(gamma1)<<std::endl; double m1=(cos(alpha1))*(cos(gamma1)); double n1=(sin(alpha1))*(cos(gamma1)); double p1=sin(gamma1); double m2=(cos(alpha2))*(cos(gamma2)); double n2=(sin(alpha2))*(cos(gamma2)); double p2=sin(gamma2); std::cout<<"方向向量1为:"<<m1<<","<<n1<<","<<p1<<std::endl; Eigen::MatrixXd a1(2,2);//待求A1、B1、C1等参数 Eigen::MatrixXd b1(2,2); Eigen::MatrixXd c1(2,2); Eigen::MatrixXd a2(2,2); Eigen::MatrixXd b2(2,2); Eigen::MatrixXd c2(2,2); a1<<n1,p1,n2,p2; b1<<p1,m1,p2,m2; c1<<m1,n1,m2,n2; double A1=a1.determinant();//计算行列式 double B1=b1.determinant(); double C1=c1.determinant(); a2<<n2,B1,p2,C1; b2<<p2,C1,m2,A1; c2<<m2,A1,n2,B1; double A2=a2.determinant();//计算行列式 double B2=b2.determinant(); double C2=c2.determinant(); double A3=n1*C1-p1*B1; double B3=p1*A1-m1*C1; double C3=m1*B1-n1*A1; Eigen::MatrixXd delta10(3,3); delta10<<A1,B1,C1,A2,B2,C2,n1,-m1,0; double delta1=delta10.determinant(); Eigen::MatrixXd delta20(2,2); Eigen::MatrixXd delta21(2,2); delta20<<B1,C1,B3,C3; delta21<<A1,C1,A3,C3; double delta2=n2*(delta20.determinant())+m2*(delta21.determinant()); double D1=A2*(x2-x1)+B2*(y2-y1)+C2*(z2-z1); double D2=A3*(x1-x2)+B3*(y1-y2)+C3*(z1-z2); double Xg,Yg,Zg,Xh,Yh,Zh,Xtarget,Ytarget,Ztarget;//两直线垂足G和H点坐标,目标点在其中点位置。 Xg=x1-(D1*m1*C1)/delta1; Yg=y1-(D1*n1*C1)/delta1; Zg=z1+D1*(A1*m1+B1*n1)/delta1; Xh=x2-(D2*m2*C1)/delta2; Yh=y2-(D2*n2*C1)/delta2; Zh=z2+D2*(A1*m2+B1*n2)/delta2; Xtarget=(Xg+Xh)/2; Ytarget=(Yg+Yh)/2; Ztarget=(Zg+Zh)/2; //TP<<xw,yw,zw,1;我们要求的 //逆矩阵、行列式 std::cout << "行列式: " << c.determinant() << std::endl; //输入两个探测站的俯仰角和偏转角度数,下面会转换成弧度。 //假设值 std::cout<<"目标坐标为:"<<Xtarget<<","<<Ytarget<<","<<Ztarget<<std::endl<<std::endl; getchar(); //waitKey(0); return 0; }
ζั͡ޓއ genji - 至此只为原地流浪.......