摘要: 前言 针对定位精度受到不准确边界框的严重影响,而分类精度受影响较小,因此本文提出利用分类作为指导信号来改进定位结果。通过将目标视为实例包,作者提出了一种目标感知多实例学习方法(OA-MIL),其特点是目标感知实例选择和目标感知实例扩展。前者旨在为训练选择准确的实例,而不是直接使用不准确的框标注。后者 阅读全文
posted @ 2022-09-12 11:47 CV技术指南(公众号) 阅读(92) 评论(0) 推荐(0) 编辑