Transformer一作来卷多模态!学术图表也能看懂,100毫秒极速响应|免费试玩

前言 最近多模态大模型是真热闹啊。这不,Transformer一作携团队也带来了新作,一个规模为80亿参数的多模态大模型Fuyu-8B。而且发布即开源,模型权重在Hugging Face上可以看到。

本文转载自量子位

仅用于学术分享,若侵权请联系删除

欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。

CV各大方向专栏与各个部署框架最全教程整理

【CV技术指南】CV全栈指导班、基础入门班、论文指导班 全面上线!!

该模型具备强大的图像理解能力。

照片、图表、PDF、界面UI都不在话下。

能从这么一张复杂的食物网里理清楚各个生物之间的关系。

提问:道格拉斯冷杉针叶缺失了,哪种生物会灭绝?
回答:红树田鼠。

也能从密密麻麻的连线图里找到,权游“小指头”扮演者Aidan Gillen出演过HBO两个系列的剧。

看得懂专业图表,可以帮你找到想要的数据。

提问:(左图)24、32、33、42这组数字序列中丢了哪个数?
回答:29

一张包含多个图表的PDF也难不倒它。提问:加州哪里的工作前景不错?

Fuyu-8B可以准确找到对应的信息块,并给出正确答案“洛杉矶”。

而且Fuyu-8B的处理速度很快,研究团队表示100毫秒内可反馈大图像处理结果。

同时它还很“轻巧”,不仅模型规模没超百亿,还没有使用图像编码器。

这让它能更快速进行训练和推理,并支持处理任意大小图像。

Hugging Face联创兼CTO看了都有点激动,表示假如自己还没有创业,那么这个项目会启发他做点什么。

该成果来自Transformer一作Ashish Vaswani所在创业公司Adept。

目前该模型已开源,demo可线上试玩。

一个只有解码器的Transformer

现在在Hugging Face上即可体验Fuyu-8B的能力。

Demo中提供了两种任务。

  • 看图问答
  • 图像概述

可以上传一张图片然后对大模型进行提问。

或者是直接让它看图然后描述图片内容。

大模型的常识水平不错,比如问它一道甜点是怎么做的?

它给出的回答是:

这道甜点是用一层层的酥皮做成的,上面点缀着开心果和帕玛森奶酪。

测试了下中文能力,发现它能理解中文,但是“习惯性”用英文回答。

模型采用了一种简单的架构:纯解码器Transformer。

它没有图像编码器。图像块(image patch)绕过embedding lookup,即在嵌入矩阵中查找特定输入的过程,直接映射到Transformer的第一层。

这种架构使得模型能支持任意图像分辨率。

研究团队删除了图像特定位置嵌入,并按扫描线顺序(raster-scan order)输入尽可能多的图像token。

通过一个特殊的图像转换行符号,模型能知道在什么时候断行。

由此模型在训练时可以使用任意大小的图像。

这种架构也更进一步简化了模型的训练和推理过程。

这种架构模式也引起了不少网友的关注,有人就表示,之前总觉得大模型图像理解能力差是因为使用了固定大小的patch。

但Fuyu-8B反驳了他的这一想法。

实验结果显示Fuyu-8B在多个任务中性能优于PaLM-e-12B和QWEN-VL(10B)。

研究团队还表示,刷榜不是他们本次工作的最终目的,所以模型没有进行优化。

他们构建这个大模型的真正目的是为了提升自家产品的能力。

Adept团队致力于打造一个AI Copilot。

这个Copilot能够理解用户屏幕上的内容(比如网页、PPT、PDF、图表等),并能辅助人类快速完成工作。

这就要求大模型需要能理解环境信息,同时可以代替人类进行操作。换言之,需要大模型能具备超强的图像理解能力。

所以这也是为啥Fuyu-8B会很强调对UI的理解能力。

比如它能理解你打开的窗口,以及窗口内的信息。

Adept:新晋独角兽

带来这一新工作的团队是Adept。

这是一家由Transformer一作、前OpenAI工程副总裁等业内大佬共同创立的AI公司。

它成立于2022年4月。目前已完成B轮融资,总融资额达4.15亿美元,公司估值超过10亿美元。

首席科学家是Ashish Vaswani。他是《Attention is all you need》的第一作者,平常看论文时经常出现的“(Vaswani et al., 2017)”就是这位大佬。

他博士毕业于南加州大学,在谷歌大脑工作已有5年。

Transformer的另一位作者Niki Parmar也加入了该团队。
她在印度上完大学后,同样在南加州大学读完硕士,在谷歌工作了近7年。

创始人兼CEO David Luan,是前OpenAI加州实验室工程副总裁,参与过GPT-2、GPT-3、CLIP、DALL-E等模型的开发,后来加入谷歌,曾任谷歌大脑大模型研究的Director。

Adept致力于打造一个AI Copilot。

团队在去年推出的首项工作,就颇有AutoGPT那感觉。

他们打造的Action Transformer(ACT-1),会使用浏览器、Excel等,能理解人类给出的命令并完成相应操作。

比如想要在Excel表格中加上利润、利润率,只需把这段话输入给AI,它就能自己在对应行列创建公式完成任务了。

动图封面
 

同时该团队还非常关注开源工作。

今年先后推出的两项工作Persimmon-8B和Fuyu-8B,都已对外开源。

Demo试玩:

参考链接:
[1]
[2]
[3]
[4]

 

欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。

计算机视觉入门1v3辅导班

【技术文档】《从零搭建pytorch模型教程》122页PDF下载

QQ交流群:470899183。群内有大佬负责解答大家的日常学习、科研、代码问题。

其它文章

分享一个CV知识库,上千篇文章、专栏,CV所有资料都在这了

明年毕业,还不知道怎么做毕设的请抓紧机会了

LSKA注意力 | 重新思考和设计大卷积核注意力,性能优于ConvNeXt、SWin、RepLKNet以及VAN

CVPR 2023 | TinyMIM:微软亚洲研究院用知识蒸馏改进小型ViT

ICCV2023|涨点神器!目标检测蒸馏学习新方法,浙大、海康威视等提出

ICCV 2023 Oral | 突破性图像融合与分割研究:全时多模态基准与多交互特征学习

听我说,Transformer它就是个支持向量机

HDRUNet | 深圳先进院董超团队提出带降噪与反量化功能的单帧HDR重建算法

南科大提出ORCTrack | 解决DeepSORT等跟踪方法的遮挡问题,即插即用真的很香

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

SAM-Med2D:打破自然图像与医学图像的领域鸿沟,医疗版 SAM 开源了!

GhostSR|针对图像超分的特征冗余,华为诺亚&北大联合提出GhostSR

Meta推出像素级动作追踪模型,简易版在线可玩 | GitHub 1.4K星

CSUNet | 完美缝合Transformer和CNN,性能达到UNet家族的巅峰!

AI最全资料汇总 | 基础入门、技术前沿、工业应用、部署框架、实战教程学习

计算机视觉入门1v3辅导班

计算机视觉交流群

聊聊计算机视觉入门

posted @ 2023-10-22 15:03  CV技术指南(公众号)  阅读(22)  评论(0编辑  收藏  举报