[Arc058E] Iroha and Haiku
[Arc058E] Iroha and Haiku
题目大意
问有多少\(n\)个数的正整数序列,每个数在\([1,10]\)之间,满足存在\(x,y,z,w\)使得\(x\to y-1,y\to z-1,z\to w\)的和分别为\(X,Y,Z\)。
\(X,Z\leq 5,Y\leq 7\)
试题分析
由于发现\(X+Y+Z\)和\(a_i\)很小,所以考虑状态压缩,可以用位数来表示数字,比如\(5=10000,1=1\)。
然后不合法方案数比合法方案数好求,所以直接求不和法即可。
#include<iostream>
#include<cstring>
#include<vector>
#include<queue>
#include<cstdio>
#include<algorithm>
using namespace std;
#define LL long long
inline LL read(){
LL x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const LL INF=9999999;
const LL MAXN=100010;
const LL Mod = 1e9+7;
LL N,X,Y,Z;
LL Finall,MAX;
LL f[41][(1<<18)];
LL ans=0;
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
N=read(); X=read(),Y=read(),Z=read();
Finall=(1LL<<(X-1))|(1LL<<(X+Y-1))|(1LL<<(X+Y+Z-1));
MAX=(1LL<<(X+Y+Z))-1; f[0][0]=1; LL Pw=1;
for(LL i=0;i<N;i++){
Pw=Pw*10LL%Mod;
for(LL j=0;j<=MAX;j++){
if(!f[i][j]) continue;
for(LL k=1;k<=10;k++){
LL x=MAX&((j<<k)|(1LL<<(k-1)));
if((x&Finall)==Finall) continue;
f[i+1][x]+=f[i][j]; f[i+1][x]%=Mod;
}
} //cout<<endl; system("pause");
} for(LL j=0;j<=MAX;j++) (ans+=f[N][j])%=Mod;
printf("%lld\n",(Pw-ans+Mod)%Mod);
return 0;
}
你——悟到了么?