利用有限自动机(finite automata)进行模式匹配

一.有限自动机定义及基本术语:
  一个有限自动机 M 是一个5元组(Q, ,A, Σ, δ),其中:

  • Q 是所有状态的有限集合;
  •  ∈ Q (属于)是初始状态;
  • A ⊆ Q (子集)是接受状态的集合;
  • Σ 是有限输入字母表;   
  • δ 是从Q * Σ的转移函数,称为有限自动机M的转移函数;

记号与术语:

  • Σ*  表示用字母表Σ中所有字符形成的所有有限长度的字符串集合.
  • n输入字符串(input string)的长度.
  • m模式字符串(pattern string)的长度;也称作终态m,当状态为m时表示,m长度的模式串匹配成功.
  • |x| : 字符串x的长度, 如示符号记法.
  • : 字符串w 是字符串x的前缀.
  •  : 字符串w 是字符串x 的后缀.
  • ε:表示空字符串,是所有字符串的后缀,前缀.
  • a : 下文中的字符a泛指所有字符(a∈Σ).

二.引入的函数定义:
  转移函数δ.有限自动机开始于初始状态,每次读入输入字符串的一个字符,如果有限自动机在状态q是读入字符'a',  则M状态从q变成 δ(q, a);
  终态函数 Φ. 是从Σ*到Q的函数,Φ(w)是永动机M扫描字符串w终止后的状态;M接受字符串w当且仅当Φ(w)∈A, 函数Φ有下列递归关系定义:
    φ(ε) = q0;(空字符串 ε 的终态为q0)

    φ(wa) = δ(φ(w),a) (其中w∈Σ*,a∈Σ)
  辅助函数,后缀函数σ对应于模式字串P是从Σ* 到{0,1, ..., m}上的映射,σ(x)是字符串x的后缀同时是P的前缀的最大长度;
    σ(x) = max{k: Pk ⊐ x }
    有P0 = ε是所有所有字符串的后缀;
  注意:后缀函数的主要意义的是求出当前匹配失败时,求出已经匹配过的部分字串x是否是待匹配模式字串P的前缀,即匹配可以跳过x中部分长度(σ(x)),可以用于实现转移过程;同时也表明在接受输入字符串x后的状态(终态),即也用于实现终态函数。
三、字符串匹配自动机(string-matching automation)
  下图是依据模式串 P="ababaca" 构建的自动机图表:


  上图(a)是一个自动机的状态转换图表,接受所有以字符串"ababaca"结尾的字符串。其中状态0是初始状态,状态7是唯一接受状态.

  • 从状态i到状态j的带箭头的有向边表示转移过程: δ(i, a) = j(a∈Σ).
  • 右向边组成了自动机的主要"骨架",图中粗线部分,对应于输入字符同模式字串匹配成功的转移过程。左向边对应于匹配失败的转移过程(跳转,主要是计算已经匹配的部分字串的后缀子串同时是模式串P的前缀的最大长度).部分匹配失败的过程没有标示出来。
  • 图中部分状态i在接受某字符a(a∈Σ)时,没有标示出对应有向边的情况表明其转移过程为: δ(i, a) = 0(a∈Σ),根据下面字符串模式匹配自动机定义,知当前已经匹配子串没有后缀字串是模式串P的前缀。如在状态3时,输入字符为'c',即在已经匹配 了"aba"这时接受字符'c',知当前已匹配字串为"abac",对应模式字串P="ababaca",可知这时匹配失败,进行失败跳转求"abac"后缀子串同时是模式串P前缀的最大长度,可知为0.
  • 匹配成功的转移过程(对应状态,以及对应输入字符)均标示为灰色,
  • 表(c)是自动机在处理(接受)输入文本T="abababacaba"的最终状态表。当输入字符T[i]时,此时字串T[0...i]对应的的最终状态 φ(T[0...i]) 同表(c)最后一列一一对应。有T["abababaca"] = P.length = 7(唯一接受状态),即这时候在T串中匹配成功模式串P,结束位置为9,起始位置为(9-P.length+1)=3。

3.字符串匹配有限自动机定义:
  给定模式(pattern)字符串 P[1...m],其对应的字符串匹配有限自动机定义如下:

  1. 状态集Q = {0,1,...m},开始状态q0是状态0,state m是唯一的接受状态;
  2. 转移函数δ 可以用后缀函数来表示:

    δ(q,a) = σ(Pq,a)
  假设当前已经读入的字符串为T,为了让T的字串(以T[i]为结尾) 能匹配模式字串Pj,必须满足Pj是Ti的后缀;同时假设q = φ(Ti),说明读取字串Ti后自动机M状态变成q;同时根据转移函数<等式一>可知q是模式字串P最大长度的前缀,同时是Ti的后缀;因此在状态q,有Pq⊐Ti和 q=σ(Ti) (当q 等于m 时,说明模式字串P整个是Ti的后缀,也意味着匹配查找成功了),因此有σ(Ti)= q,得出永动机也支持下面的等式(终态函数也是抽象的,转化为后缀函数表达式后,可以用code表示):
     φ(Ti) = σ(Ti)(i = 0,1,...n)
  引理1、后缀函数不等式:
           σ(xa) ≤ σ(x) + 1 (对于任何字符串x,以及字母a)
  引理2、后缀函数递归引理: 对于任何字符串x,以及字母a,如果q = σ(x),有:
           σ(xa) = σ(Pqa)
  从上面可以知道当读入T i 的终态(亦即读入T[i]后转移函数状态)等于模式长度,就匹配成功了,下面是有限自动机机匹配算法伪代码:


  下面就是根据<等式一>来实现转移函数的伪代码:

 代码实现

public class DFA {
    private final int R;       //the radix
    private int[][] dfa;       //the KMP automoton
    private String pat;        //or the pattern string

    public DFA(String pat) {
        this.R = 256;
        this.pat = pat;

        // build DFA from pattern
        int m = pat.length();
        dfa = new int[R][m]; 
        dfa[pat.charAt(0)][0] = 1; 
        for (int x = 0, j = 1; j < m; j++) {
            for (int c = 0; c < R; c++) 
                dfa[c][j] = dfa[c][x];   // Copy mismatch cases. 
            dfa[pat.charAt(j)][j] = j+1; // Set match case. 
            x = dfa[pat.charAt(j)][x];   // Update restart state. 
        } 
    } 

    public int search(String txt) {
        int m = pat.length();
        int n = txt.length();
        int i, j;
        for (i = 0, j = 0; i < n && j < m; i++) {
            j = dfa[txt.charAt(i)][j];
        }
        if (j == m) return i - m;    //found
        return n;                    //not found
    }

    public static void main(String[] args) {
       String pat="ababcab";
       DFA dfa=new DFA(pat);
       System.out.println(dfa.search("aabacababcabacab"));
    }
}
View Code

 

posted @ 2016-07-23 18:42  简单爱_wxg  阅读(1596)  评论(0编辑  收藏  举报