最小路径(prim)算法
#include <stdio.h>
#include <stdlib.h>
/* 最小路径算法 --》prim算法 */
#define VNUM 9
#define MV 65536
int P[VNUM];
int Cost[VNUM];
int Mark[VNUM]; //标记数组
int Matrix[VNUM][VNUM] = //邻居矩阵 无向图
{
{0, 10, MV, MV, MV, 11, MV, MV, MV},
{10, 0, 18, MV, MV, MV, 16, MV, 12},
{MV, 18, 0, 22, MV, MV, MV, MV, 8},
{MV, MV, 22, 0, 20, MV, MV, 16, 21},
{MV, MV, MV, 20, 0, 26, MV, 7, MV},
{11, MV, MV, MV, 26, 0, 17, MV, MV},
{MV, 16, MV, MV, MV, 17, 0, 19, MV},
{MV, MV, MV, 16, 7, MV, 19, 0, MV},
{MV, 12, 8, 21, MV, MV, MV, MV, 0},
};
//sv开始
void Prim(int sv) // O(n*n)
{
int i = 0;
int j = 0;
if( (0 <= sv) && (sv < VNUM) )
{
for(i=0; i<VNUM; i++)
{
Cost[i] = Matrix[sv][i];
P[i] = sv; //记录边数组
Mark[i] = 0;//初始化0
}
Mark[sv] = 1;
for(i=0; i<VNUM; i++)
{
int min = MV;
int index = -1;
for(j=0; j<VNUM; j++)
{
if( !Mark[j] && (Cost[j] < min) )
{
min = Cost[j];
index = j;
}
}
//成立 找到最小值 打印
if( index > -1 )
{
Mark[index] = 1;
printf("(%d, %d, %d)\n", P[index], index, Cost[index]);
}
//查看是否有最小的边存在
for(j=0; j<VNUM; j++)
{
//刚刚被标记的边
if( !Mark[j] && (Matrix[index][j] < Cost[j]) )
{
Cost[j] = Matrix[index][j];
P[j] = index;
}
}
}
}
}
int main(int argc, char *argv[])
{
Prim(0);
return 0;
}
说明:
1.Prim算法是针对顶点展开的, 适合于边的数量较 适合于边的数量较多的情况。
2.Kruskal算法是针对边展开的, 适合于边的数量较 适合于边的数量较少的情况。