二叉树基础知识

前言

算法就是一种经常不学就觉得自己是个傻子的存在。所以,复习下吧。

二叉树的基础定义

  • 二叉树节点的度:指的是二叉树节点拥有的子节点的数量
  • 二叉树的深度:指的是从根结点开始往下数,叶子节点所在的最大层数
  • 二叉树节点的高度:指的是从当前节点到叶子节点,经过的最短路径的节点数。
  • 满二叉树:如果一颗二叉树仅有度为0和度为2的节点,那么称这个二叉树为满二叉树。

满二叉树

​ 若满二叉树深度为 n ,则其节点数为 2^n - 1.

  • 完全二叉树:如果在一颗二叉树中,除了最底层节点外的节点可能没填满外,其余每层节点都达到最大值,且最底层节点都集中在该层最左边的若干位置,那么称这个二叉树为完全二叉树。

    完全二叉树示意图

    满二叉树一定是完全二叉树。

  • 二叉搜索树:如果在一颗二叉树中,它的非空左子树上所有节点均小于其根节点上的值,且其非空右子树上所有的节点均大于其根节点上的值,且其左右两个子树也都是二叉搜索树,那么称这个二叉树为二叉搜索树。又称二叉排序树、二叉查找树等。

二叉搜索树

  • 平衡二叉树:如果一颗二叉树,它是空树或者它左右两个子树高度差的绝对值不超过1,且其左右两个子树都是平衡二叉树,那么称这个二叉树为平衡二叉树。又称平衡二叉搜索树、二叉平衡树等。

平衡二叉树

​ 上图中最左边的二叉树不是平衡二叉树,因为其左右子树高度差大于1。

二叉树的存储方式

  • 顺序存储。二叉树也可以用数组进行存储。

    顺序存储

    由上图可知,如果父节点为i,其左子节点为 2 * i + 1,其右子节点为 2 * i + 2。

  • 链式存储。这是二叉树最常用的存储方式。

    链式存储

二叉树的遍历方式

  • 主要有两种遍历方式:广度优先遍历深度优先遍历。这两种遍历是图论中最基本的遍历方式。

  • 广度优先遍历:主要方法是层序遍历(迭代法)

  • 深度优先遍历:主要方法有前序遍历、中序遍历、后续遍历(递归法、迭代法)。这里的前中后指的是中间节点的遍历顺序

    • 前序遍历:中左右

    • 中序遍历:左中右

    • 后序遍历:右中左

      深度优先遍历方法指定的顺序

    栈是递归的一种实现结构,深度优先遍历可以借助栈用非递归(迭代)的形式来实现。

    经常使用栈和递归的方式实现深度优先遍历,使用队列和迭代的方式实现广度优先遍历。

二叉树的代码定义

public class TreeNode {
	int val;
	TreeNode left;
	TreeNode right;
	TreeNode() {};
	TreeNode(int val) {
        this.val = val;
    }
	TreeNode(int val, TreeNode left, Tree right) {
        this.val = val;
        this.left = left;
        this.right = right;
    }
}
posted @ 2022-03-21 21:33  wx2020  阅读(773)  评论(0编辑  收藏  举报