Snakemake工作的摘要翻译,如何使用snakemake的第一步!
Data analysis often entails a multitude of heterogeneous steps, from the application of various command line tools to the usage of scripting languages like R or Python for the generation of plots and tables.
数据分析往往需要多种不同的步骤,从应用各种命令行工具,到使用R或Python等脚本语言生成图和表。
It is widely recognized that data analyses should ideally be conducted in a reproducible way.
人们普遍认为,数据分析最好是以可重复的方式进行。
Reproducibility enables technical validation and regeneration of results on the original or even new data.
可重复性可以对原始数据甚至新数据进行技术验证和结果再生。
However, reproducibility alone is by no means sufficient to deliver an analysis that is of lasting impact (i.e. sustainable) for the field, or even just one research group.
然而,仅有可重复性还不足以提供对该领域,甚至仅仅是对一个研究小组具有持久影响(即可持续)的分析。
We postulate that it is equally important to ensure adaptability and transparency.
我们认为,确保适应性和透明度同样重要。
The former describes the ability to(的) modify the analysis to(以) answer extended or slightly different research questions.
前者描述了修改分析以回答扩展的或略有不同的研究问题的能力。
前边描述的是修改分析的能力,以便回答扩展性的或略有不些同的研究问题。
The latter describes the ability to(的) understand the analysis in order to(以便) judge whether it is not only technically, but methodologically valid.
后者描述的是理解分析的能力,以便判断分析不仅在技术上,而且在方法上是否有效。
Here, we analyze the properties needed for a data analysis to become(变得) reproducible, adaptable, and transparent, and show how the popular workflow management system Snakemake can be used to(来) fulfill all these needs.
在这里,我们分析了数据分析变得可重复性、适应性和透明性所需的属性,并展示了如何使用流行的工作流管理系统Snakemake来满足所有这些需求。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 三行代码完成国际化适配,妙~啊~
· .NET Core 中如何实现缓存的预热?