如何理解ROC曲线和AUC值
1、ROC曲线下的面积就是AUC值。
2、如何绘制ROC曲线,通过改变不同的阈值,每个阈值都可以得到一个混淆矩阵,通过混淆矩阵,可以计算出假阳性率和真阳性率。即该坐标系下的一个点。将阈值从0,调整到1,即可绘制出整个模型的ROC曲线。
3、ROC曲线越靠近左上角,意味着,模型越棒;
4、以上的结论针对的是2分类。如何计算多分类的ROC曲线,最简单的一种方案就是通过平均来计算。即给定一个阈值,然后计算每一个类的结果,通过平均得到一个点。以此类推,绘制出整个模型的ROC曲线,计算得到ROC的曲线下面积,得到AUC值。
AUC ROC score and curve in multiclass classification problems :: InBlog
在Python中,只是用一行命令,就能得到结果:
https://www.youtube.com/watch?v=ZlGz9Nl5irs&ab_channel=ManifoldAILearning
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)