Spark JDBC To MySQL
mysql jdbc driver下载地址
https://dev.mysql.com/downloads/connector/j/
在spark中使用jdbc
1.在 spark-env.sh 文件中加入:
export SPARK_CLASSPATH=/path/mysql-connector-java-5.1.42.jar
2.任务提交时加入:
--jars /path/mysql-connector-java-5.1.42.jar
从Spark Shell连接到MySQL:
spark-shell --jars "/path/mysql-connector-java-5.1.42.jar
可以使用Data Sources API将来自远程数据库的表作为DataFrame或Spark SQL临时视图加载。用户可以在数据源选项中指定JDBC连接属性。
可以使用Data Sources API将来自远程数据库的表作为DataFrame或Spark SQL临时视图加载。用户可以在数据源选项中指定JDBC连接属性。 user并且password通常作为用于登录数据源的连接属性提供。除了连接属性外,Spark还支持以下不区分大小写的选项:
JDBC connection properties
属性名称和含义
url:要连接的JDBC URL。列如:jdbc:mysql://ip:3306
dbtable:应该读取的JDBC表。可以使用括号中的子查询代替完整表。
driver:用于连接到此URL的JDBC驱动程序的类名,列如:com.mysql.jdbc.Driver
partitionColumn, lowerBound, upperBound, numPartitions:
这些options仅适用于read数据。这些options必须同时被指定。他们描述,如何从多个workers并行读取数据时,分割表。
partitionColumn:必须是表中的数字列。
lowerBound和upperBound仅用于决定分区的大小,而不是用于过滤表中的行。
表中的所有行将被分割并返回。
fetchsize:仅适用于read数据。JDBC提取大小,用于确定每次获取的行数。这可以帮助JDBC驱动程序调优性能,这些驱动程序默认具有较低的提取大小(例如,Oracle每次提取10行)。
batchsize:仅适用于write数据。JDBC批量大小,用于确定每次insert的行数。
这可以帮助JDBC驱动程序调优性能。默认为1000。
isolationLevel:仅适用于write数据。事务隔离级别,适用于当前连接。它可以是一个NONE,READ_COMMITTED,READ_UNCOMMITTED,REPEATABLE_READ,或SERIALIZABLE,对应于由JDBC的连接对象定义,缺省值为标准事务隔离级别READ_UNCOMMITTED。请参阅文档java.sql.Connection。
truncate:仅适用于write数据。当SaveMode.Overwrite启用时,此选项会truncate在MySQL中的表,而不是删除,再重建其现有的表。这可以更有效,并且防止表元数据(例如,索引)被去除。但是,在某些情况下,例如当新数据具有不同的模式时,它将无法工作。它默认为false。
createTableOptions:仅适用于write数据。此选项允许在创建表(例如CREATE TABLE t (name string) ENGINE=InnoDB.)时设置特定的数据库表和分区选项。
spark jdbc read MySQL
val jdbcDF11 = spark.read.format("jdbc") .option("driver", "com.mysql.jdbc.Driver") .option("url", "jdbc:mysql://ip:3306") .option("dbtable", "db.user_test") .option("user", "test") .option("password", "123456") .option("fetchsize", "3") .load() jdbcDF11.show val jdbcDF12 = spark.read.format("jdbc").options( Map( "driver" -> "com.mysql.jdbc.Driver", "url" -> "jdbc:mysql://ip:3306", "dbtable" -> "db.user_test", "user" -> "test", "password" -> "123456", "fetchsize" -> "3")).load() jdbcDF12.show
jdbc(url: String, table: String, properties: Properties): DataFrame
//----------------------------------- import java.util.Properties // jdbc(url: String, table: String, properties: Properties): DataFrame val readConnProperties1 = new Properties() readConnProperties1.put("driver", "com.mysql.jdbc.Driver") readConnProperties1.put("user", "test") readConnProperties1.put("password", "123456") readConnProperties1.put("fetchsize", "3") val jdbcDF1 = spark.read.jdbc( "jdbc:mysql://ip:3306", "db.user_test", readConnProperties1) jdbcDF1.show +---+------+---+ |uid|gender|age| +---+------+---+ | 2| 2| 20| | 3| 1| 30| | 4| 2| 40| | 5| 1| 50| | 6| 2| 60| | 7| 1| 25| | 8| 2| 35| | 9| 1| 70| | 10| 2| 80| | 1| 1| 18| +---+------+---+ //默认并行度为1 jdbcDF1.rdd.partitions.size Int = 1 //------------------------- // jdbc(url: String, table: String, properties: Properties): DataFrame val readConnProperties4 = new Properties() readConnProperties4.put("driver", "com.mysql.jdbc.Driver") readConnProperties4.put("user", "test") readConnProperties4.put("password", "123456") readConnProperties4.put("fetchsize", "3") val jdbcDF4 = spark.read.jdbc( "jdbc:mysql://ip:3306", "(select * from db.user_test where gender=1) t", // 注意括号和表别名,必须得有,这里可以过滤数据 readConnProperties4) jdbcDF4.show +---+------+---+ |uid|gender|age| +---+------+---+ | 3| 1| 30| | 5| 1| 50| | 7| 1| 25| | 9| 1| 70| | 1| 1| 18| +---+------+---+
jdbc(url: String, table: String,
columnName: String, lowerBound: Long, upperBound: Long, numPartitions: Int,
connectionProperties: Properties): DataFrame
import java.util.Properties val readConnProperties2 = new Properties() readConnProperties2.put("driver", "com.mysql.jdbc.Driver") readConnProperties2.put("user", "test") readConnProperties2.put("password", "123456") readConnProperties2.put("fetchsize", "2") val columnName = "uid" val lowerBound = 1 val upperBound = 6 val numPartitions = 3 val jdbcDF2 = spark.read.jdbc( "jdbc:mysql://ip:3306", "db.user_test", columnName, lowerBound, upperBound, numPartitions, readConnProperties2) jdbcDF2.show +---+------+---+ |uid|gender|age| +---+------+---+ | 2| 2| 20| | 1| 1| 18| | 3| 1| 30| | 4| 2| 40| | 5| 1| 50| | 6| 2| 60| | 7| 1| 25| | 8| 2| 35| | 9| 1| 70| | 10| 2| 80| +---+------+---+ // 并行度为3,对应于numPartitions jdbcDF2.rdd.partitions.size Int = 3
jdbc(url: String, table: String, predicates: Array[String], connectionProperties: Properties): DataFrame
predicates: Condition in the WHERE clause for each partition.
import java.util.Properties val readConnProperties3 = new Properties() readConnProperties3.put("driver", "com.mysql.jdbc.Driver") readConnProperties3.put("user", "test") readConnProperties3.put("password", "123456") readConnProperties3.put("fetchsize", "2") val arr = Array( (1, 50), (2, 60)) // 此处的条件,既可以分割数据用作并行度,也可以过滤数据 val predicates = arr.map { case (gender, age) => s" gender = $gender " + s" AND age < $age " } val predicates1 = Array( "2017-05-01" -> "2017-05-20", "2017-06-01" -> "2017-06-05").map { case (start, end) => s"cast(create_time as date) >= date '$start' " + s"AND cast(create_time as date) <= date '$end'" } val jdbcDF3 = spark.read.jdbc( "jdbc:mysql://ip:3306", "db.user_test", predicates, readConnProperties3) jdbcDF3.show +---+------+---+ |uid|gender|age| +---+------+---+ | 3| 1| 30| | 7| 1| 25| | 1| 1| 18| | 2| 2| 20| | 4| 2| 40| | 8| 2| 35| +---+------+---+ // 并行度为2,对应arr数组中元素的个数 jdbcDF3.rdd.partitions.size Int = 2
spark jdbc write MySQL
// For implicit conversions like converting RDDs to DataFrames import spark.implicits._ val dataList: List[(Double, String, Double, Double, String, Double, Double, Double, Double)] = List( (0, "male", 37, 10, "no", 3, 18, 7, 4), (0, "female", 27, 4, "no", 4, 14, 6, 4), (0, "female", 32, 15, "yes", 1, 12, 1, 4), (0, "male", 57, 15, "yes", 5, 18, 6, 5), (0, "male", 22, 0.75, "no", 2, 17, 6, 3), (0, "female", 32, 1.5, "no", 2, 17, 5, 5), (0, "female", 22, 0.75, "no", 2, 12, 1, 3), (0, "male", 57, 15, "yes", 2, 14, 4, 4), (0, "female", 32, 15, "yes", 4, 16, 1, 2)) val colArray: Array[String] = Array("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating") val df = dataList.toDF(colArray: _*) df.write.mode("overwrite").format("jdbc").options( Map( "driver" -> "com.mysql.jdbc.Driver", "url" -> "jdbc:mysql://ip:3306", "dbtable" -> "db.affairs", "user" -> "test", "password" -> "123456", "batchsize" -> "1000", "truncate" -> "true")).save()