Spark2 Dataset分析函数--排名函数row_number,rank,dense_rank,percent_rank

select gender,
       age,
       row_number() over(partition by gender order by age) as rowNumber,
       rank() over(partition by gender order by age) as ranks,
       dense_rank() over(partition by gender order by age) as denseRank,
       percent_rank() over(partition by gender order by age) as percentRank
  from Affairs

 

 

val spark = SparkSession.builder().appName("Spark SQL basic example").config("spark.some.config.option", "some-value").getOrCreate()

// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._
	
val dataList: List[(Double, String, Double, Double, String, Double, Double, Double, Double)] = List(
      (0, "male", 37, 10, "no", 3, 18, 7, 4), 
      (0, "female", 27, 4, "no", 4, 14, 6, 4), 
      (0, "female", 32, 15, "yes", 1, 12, 1, 4), 
      (0, "male", 57, 15, "yes", 5, 18, 6, 5), 
      (0, "male", 22, 0.75, "no", 2, 17, 6, 3), 
      (0, "female", 32, 1.5, "no", 2, 17, 5, 5), 
      (0, "female", 22, 0.75, "no", 2, 12, 1, 3), 
      (0, "male", 57, 15, "yes", 2, 14, 4, 4), 
      (0, "female", 32, 15, "yes", 4, 16, 1, 2), 
      (0, "male", 22, 1.5, "no", 4, 14, 4, 5), 
      (0, "male", 37, 15, "yes", 2, 20, 7, 2), 
      (0, "male", 27, 4, "yes", 4, 18, 6, 4), 
      (0, "male", 47, 15, "yes", 5, 17, 6, 4), 
      (0, "female", 22, 1.5, "no", 2, 17, 5, 4), 
      (0, "female", 27, 4, "no", 4, 14, 5, 4), 
      (0, "female", 37, 15, "yes", 1, 17, 5, 5), 
      (0, "female", 37, 15, "yes", 2, 18, 4, 3), 
      (0, "female", 22, 0.75, "no", 3, 16, 5, 4), 
      (0, "female", 22, 1.5, "no", 2, 16, 5, 5), 
      (0, "female", 27, 10, "yes", 2, 14, 1, 5), 
      (0, "female", 22, 1.5, "no", 2, 16, 5, 5), 
      (0, "female", 22, 1.5, "no", 2, 16, 5, 5), 
      (0, "female", 27, 10, "yes", 4, 16, 5, 4), 
      (0, "female", 32, 10, "yes", 3, 14, 1, 5), 
      (0, "male", 37, 4, "yes", 2, 20, 6, 4))

val data = dataList.toDF("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")

data.printSchema()

// 创建视图 
data.createOrReplaceTempView("Affairs")

val s1="row_number() over(partition by gender order by age) as rowNumber,"
val s2="rank() over(partition by gender order by age) as ranks,"
val s3="dense_rank() over(partition by gender order by age) as denseRank,"
val s4="percent_rank() over(partition by gender order by age) as percentRank"
val df8=spark.sql("select gender,age,"+s1+s2+s3+s4+" from Affairs")

df8.show(50)
+------+----+---------+-----+---------+------------------+                      
|gender| age|rowNumber|ranks|denseRank|       percentRank|
+------+----+---------+-----+---------+------------------+
|female|22.0|        1|    1|        1|               0.0|
|female|22.0|        2|    1|        1|               0.0|
|female|22.0|        3|    1|        1|               0.0|
|female|22.0|        4|    1|        1|               0.0|
|female|22.0|        5|    1|        1|               0.0|
|female|22.0|        6|    1|        1|               0.0|
|female|27.0|        7|    7|        2|               0.4|
|female|27.0|        8|    7|        2|               0.4|
|female|27.0|        9|    7|        2|               0.4|
|female|27.0|       10|    7|        2|               0.4|
|female|32.0|       11|   11|        3|0.6666666666666666|
|female|32.0|       12|   11|        3|0.6666666666666666|
|female|32.0|       13|   11|        3|0.6666666666666666|
|female|32.0|       14|   11|        3|0.6666666666666666|
|female|37.0|       15|   15|        4|0.9333333333333333|
|female|37.0|       16|   15|        4|0.9333333333333333|
|  male|22.0|        1|    1|        1|               0.0|
|  male|22.0|        2|    1|        1|               0.0|
|  male|27.0|        3|    3|        2|              0.25|
|  male|37.0|        4|    4|        3|             0.375|
|  male|37.0|        5|    4|        3|             0.375|
|  male|37.0|        6|    4|        3|             0.375|
|  male|47.0|        7|    7|        4|              0.75|
|  male|57.0|        8|    8|        5|             0.875|
|  male|57.0|        9|    8|        5|             0.875|
+------+----+---------+-----+---------+------------------+

 

posted @ 2016-11-25 18:34  智能先行者  阅读(8027)  评论(0编辑  收藏  举报