Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
As an example, the maximal sub-rectangle of the array: 

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
is in the lower left corner: 

9 2 
-4 1 
-1 8 
and has a sum of 15. 

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2

Sample Output

15

解题思路:
最大子矩阵,首先一行数列很简单求最大的子和,我们要把矩阵转化成一行数列,
就是从上向下在输入的时候取和,a[i][j]表示在J列从上向下的数和,这样就把一列转化成了一个点,
再用双重,循环,任意i行j列开始的一排数的最大和,就是最终的最大和
注意:如果m<0,则就不需要继续加了
程序代码:
 1 #include <cstdio>
 2 #include <cstring>
 3 using namespace std;
 4 int a[110][110];
 5 int main()
 6 {
 7     int n,c;
 8     while( scanf("%d",&n)==1)
 9     {
10       memset(a,0,sizeof(a));
11     for(int i=1;i<=n;i++)
12         for(int j=1;j<=n;j++)
13             {
14                 scanf("%d",&c);
15                 a[i][j]=a[i-1][j]+c;
16             }
17     int sum=0;
18     for(int i=1;i<=n;i++)
19         for(int j=i;j<=n;j++)
20         {
21             int m=0;
22             for(int k=1;k<=n;k++)
23             {
24                 int t=a[j][k]-a[i-1][k];
25                 m+=t;
26                 if(m<0) m=0;
27                 if(sum<m) sum=m;
28             }
29         }
30 
31     printf("%d\n",sum);
32     }
33     return 0;
34 }
View Code