---恢复内容开始---
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D<tex2html_verbatim_mark> of integer values, compute how many quadruplet (a, b, c, d ) AxBxCxD<tex2html_verbatim_mark> are such that a + b + c + d = 0<tex2html_verbatim_mark> . In the following, we assume that all lists have the same size n<tex2html_verbatim_mark> .
Input
The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.
The first line of the input file contains the size of the lists n<tex2html_verbatim_mark> (this value can be as large as 4000). We then have n<tex2html_verbatim_mark> lines containing four integer values (with absolute value as large as 228<tex2html_verbatim_mark> ) that belong respectively to A, B, C<tex2html_verbatim_mark> and D<tex2html_verbatim_mark> .
Output
For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
1 6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
5
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
#include<cstdio> #include<algorithm> using namespace std; int a[16000010]; int b[16000010]; int p[4010][4]; int t; int erfen(int x) { int cnt=0; int l=0,r=t-1,mid; while(r>l) { mid=(l+r)>>1; if(b[mid]>=x) r=mid; else l=mid+1; } while(b[l]==x&&l<t) { cnt++; l++; } return cnt; } int main() { int n,i,j,T; long long res; scanf("%d",&T); while(T--) { scanf("%d",&n); res=0; for(i=0;i<n;i++) for(j=0;j<4;j++) scanf("%d",&p[i][j]); t=0; for(i=0;i<n;i++) for(j=0;j<n;j++) a[t++]=p[i][0]+p[j][1]; sort(a,a+t); t=0; for(i=0;i<n;i++) for(j=0;j<n;j++) b[t++]=p[i][2]+p[j][3]; sort(b,b+t); for(i=0;i<t;i++) res+=erfen(-a[i]); printf("%d\n",res); if(T) printf("\n"); } return 0; }
---恢复内容结束---