OC对象之旅 weak弱引用实现分析
Runtime学习 -- weak
应用源码学习
Runtime源码分析,带你了解OC实现过程。其中参考了大量的大神的代码以及文献,里面也有个人的见解,欢迎拍砖,欢迎交流。
两种常见使用场景
/// weak属性
@interface XX : XX
@property(nonatomic,weak) Type* weakPtr;
@end
/// 代码块中使用
{
/// 使用__weak
__weak Type* weakPtr = [[SomeObject alloc] init];
}
根据调试信息,发现两者的区别是:
- 第一种进入到
id objc_storeWeak(id *location, id newObj)方法
/**
* This function stores a new value into a __weak variable. It would
* be used anywhere a __weak variable is the target of an assignment.
*
* @param location The address of the weak pointer itself
* @param newObj The new object this weak ptr should now point to
*
* @return \e newObj
*/
id
objc_storeWeak(id *location, id newObj)
{
return storeWeak<DoHaveOld, DoHaveNew, DoCrashIfDeallocating>
(location, (objc_object *)newObj);
}
- 第二种绕一个远路,先初始化
id objc_initWeak(id *location, id newObj)
/**
* Initialize a fresh weak pointer to some object location.
* It would be used for code like:
*
* (The nil case)
* __weak id weakPtr;
* (The non-nil case)
* NSObject *o = ...;
* __weak id weakPtr = o;
*
* This function IS NOT thread-safe with respect to concurrent
* modifications to the weak variable. (Concurrent weak clear is safe.)
*
* @param location Address of __weak ptr.
* @param newObj Object ptr.
*/
id objc_initWeak(id *location, id newObj)
{
if (!newObj) {
*location = nil;
return nil;
}
return storeWeak<DontHaveOld, DoHaveNew, DoCrashIfDeallocating>
(location, (objc_object*)newObj);
}
- 两者最终进入到如下方法
template <HaveOld haveOld, HaveNew haveNew,
CrashIfDeallocating crashIfDeallocating>
static id
storeWeak(id *location, objc_object *newObj)
{
///略去,下面会进行分析
...
return (id)newObj;
}
所以重点就在 storeWeak
这个方法中,let's do it
分析源码
storeWeak
源码的如下:
template <HaveOld haveOld, HaveNew haveNew,
CrashIfDeallocating crashIfDeallocating>
static id storeWeak(id *location, objc_object *newObj)
{
assert(haveOld || haveNew);
if (!haveNew) assert(newObj == nil);
Class previouslyInitializedClass = nil;
id oldObj;
SideTable *oldTable;
SideTable *newTable;
// Acquire locks for old and new values.
// Order by lock address to prevent lock ordering problems.
// Retry if the old value changes underneath us.
retry:
if (haveOld) {
oldObj = *location;
oldTable = &SideTables()[oldObj];
} else {
oldTable = nil;
}
if (haveNew) {
newTable = &SideTables()[newObj];
} else {
newTable = nil;
}
SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);
if (haveOld && *location != oldObj) {
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
goto retry;
}
// Prevent a deadlock between the weak reference machinery
// and the +initialize machinery by ensuring that no
// weakly-referenced object has an un-+initialized isa.
/// 注释大意是通过下面操作,保证所有的弱引用对象的isa都被初始化,这样可以防止死锁,PS,这里我不是太明白,求指教
if (haveNew && newObj) {
/// 下面的操作是初始化isa
Class cls = newObj->getIsa();
if (cls != previouslyInitializedClass &&
!((objc_class *)cls)->isInitialized())
{
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
_class_initialize(_class_getNonMetaClass(cls, (id)newObj));
// If this class is finished with +initialize then we're good.
// If this class is still running +initialize on this thread
// (i.e. +initialize called storeWeak on an instance of itself)
// then we may proceed but it will appear initializing and
// not yet initialized to the check above.
// Instead set previouslyInitializedClass to recognize it on retry.
previouslyInitializedClass = cls;
goto retry;
}
}
// Clean up old value, if any.
if (haveOld) {
weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
}
// Assign new value, if any.
if (haveNew) {
newObj = (objc_object *)
weak_register_no_lock(&newTable->weak_table, (id)newObj, location,
crashIfDeallocating);
// weak_register_no_lock returns nil if weak store should be rejected
// Set is-weakly-referenced bit in refcount table.
if (newObj && !newObj->isTaggedPointer()) {
newObj->setWeaklyReferenced_nolock();
}
// Do not set *location anywhere else. That would introduce a race.
*location = (id)newObj;
}
else {
// No new value. The storage is not changed.
}
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
return (id)newObj;
}
- template <HaveOld haveOld, HaveNew haveNew,CrashIfDeallocating crashIfDeallocating>是C++的一种泛型实现,相当于这里申明了变量或者类型,可以在代码块中使用,用于处理不同的未知类型&枚举。
- haveOld 弱引用是否已经有所指向
- haveNew 是否有新的指向
- CrashIfDeallocating 执行方法时发生Deallocate是否Crash
PS:初始化ISA那部分为何能阻止死锁,我没有看懂
该函数流程如下:
重点来了:
/// SideTables
oldTable = &SideTables()[oldObj];
newTable = &SideTables()[newObj];
/// taggedPointer是什么鬼
isTaggedPointer
/// 注册弱引用
weak_register_no_lock(&newTable->weak_table, (id)newObj, location,crashIfDeallocating);
/// 消除弱引用
weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
SideTable
SideTable
是一个结构体,定义如下
struct SideTable {
spinlock_t slock;
RefcountMap refcnts;
weak_table_t weak_table;
SideTable() {
memset(&weak_table, 0, sizeof(weak_table));
}
~SideTable() {
_objc_fatal("Do not delete SideTable.");
}
///锁
....
};
- spinlock_t solck 锁
- RefcountMap refcnts 强引用使用,略过
- weak_table_t weak_table 弱引用表
SideTable
是存放引用关系的,对象通过Hash值操作,在SideTableBuf
中寻找与之对应的SideTable
,SideTableBuf
初始化过程如下:
alignas(StripedMap<SideTable>) static uint8_t
SideTableBuf[sizeof(StripedMap<SideTable>)];
/// 会在Objc_init中调用该方法
static void SideTableInit() {
/// 这句话貌似没什么卵用,求指教
new (SideTableBuf) StripedMap<SideTable>();
}
/// 寻找SideTable
static StripedMap<SideTable>& SideTables() {
return *reinterpret_cast<StripedMap<SideTable>*>(SideTableBuf);
}
StripedMap
是一个泛型类,并重写了[]运算符,通过对象的地址,运算出Hash值,通过该hash值找到对象的SideTable
template<typename T>
class StripedMap {
enum { CacheLineSize = 64 };
#if TARGET_OS_EMBEDDED
enum { StripeCount = 8 };
#else
enum { StripeCount = 64 };
#endif
struct PaddedT {
T value alignas(CacheLineSize);
};
PaddedT array[StripeCount];
/// 运算
static unsigned int indexForPointer(const void *p) {
uintptr_t addr = reinterpret_cast<uintptr_t>(p);
/// 位运算可以控制返回值在0-63之间
return ((addr >> 4) ^ (addr >> 9)) % StripeCount;
}
public:
T& operator[] (const void *p) {
return array[indexForPointer(p)].value;
}
/// 下面略去
...
}
taggedPointer
简单的说,这是一种优化手段,即将对象的值,存入对象的地址中,这些工程师简直丧心病狂,就为了省一点内存嘛!
进入正题,看看怎么实现弱引用的
先看看注册的过程吧
/**
* Registers a new (object, weak pointer) pair. Creates a new weak
* object entry if it does not exist.
*
* @param weak_table The global weak table.
* @param referent The object pointed to by the weak reference.
* @param referrer The weak pointer address.
*/
id weak_register_no_lock(weak_table_t *weak_table, id referent_id,
id *referrer_id, bool crashIfDeallocating)
{
/// 转化为object
objc_object *referent = (objc_object *)referent_id;
objc_object **referrer = (objc_object **)referrer_id;
/// 如果是taggedPointer,就没有引用的过程了
if (!referent || referent->isTaggedPointer()) return referent_id;
// ensure that the referenced object is viable
bool deallocating;
if (!referent->ISA()->hasCustomRR()) {
deallocating = referent->rootIsDeallocating();
}
else {
BOOL (*allowsWeakReference)(objc_object *, SEL) =
(BOOL(*)(objc_object *, SEL))
object_getMethodImplementation((id)referent,
SEL_allowsWeakReference);
if ((IMP)allowsWeakReference == _objc_msgForward) {
return nil;
}
deallocating =
! (*allowsWeakReference)(referent, SEL_allowsWeakReference);
}
/// 如果正在被销毁
if (deallocating) {
if (crashIfDeallocating) {
_objc_fatal("Cannot form weak reference to instance (%p) of "
"class %s. It is possible that this object was "
"over-released, or is in the process of deallocation.",
(void*)referent, object_getClassName((id)referent));
} else {
return nil;
}
}
// now remember it and where it is being stored
weak_entry_t *entry;
if ((entry = weak_entry_for_referent(weak_table, referent))) {
append_referrer(entry, referrer);
}
else {
weak_entry_t new_entry(referent, referrer);
weak_grow_maybe(weak_table);
weak_entry_insert(weak_table, &new_entry);
}
// Do not set *referrer. objc_storeWeak() requires that the
// value not change.
return referent_id;
}
先从这行数的参数说起,参数有4个
- weak_table_t *weak_table hash表
- id referent_id, 弱引用对象
- id *referrer_id, 弱引用指针
- bool crashIfDeallocating 如果正在Deallocate是否crash
后三个参数不用解释,主要解释第一个参数,weak_table_t
,定义如下
/**
* The global weak references table. Stores object ids as keys,
* and weak_entry_t structs as their values.
*/
struct weak_table_t {
weak_entry_t *weak_entries; ///数组,用于存储引用对象集合
size_t num_entries; /// 存储数目
uintptr_t mask; /// 当前分配容量
uintptr_t max_hash_displacement; /// 已使用容量
};
没错,weak_table_t
就是寄存在SideTable
中
- weak_entry_t *weak_entries; ///数组,用于存储引用对象集合
- size_t num_entries; /// 存储数目
- uintptr_t mask; /// 当前分配容量
- uintptr_t max_hash_displacement; /// 已使用容量
定义中我们重点关注weak_entry_t
struct weak_entry_t {
DisguisedPtr<objc_object> referent;
union {
struct {
weak_referrer_t *referrers;
uintptr_t out_of_line_ness : 2;
uintptr_t num_refs : PTR_MINUS_2;
uintptr_t mask;
uintptr_t max_hash_displacement;
};
struct {
// out_of_line_ness field is low bits of inline_referrers[1]
weak_referrer_t inline_referrers[WEAK_INLINE_COUNT];
};
};
bool out_of_line() {
return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
}
weak_entry_t& operator=(const weak_entry_t& other) {
memcpy(this, &other, sizeof(other));
return *this;
}
weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
: referent(newReferent)
{
inline_referrers[0] = newReferrer;
for (int i = 1; i < WEAK_INLINE_COUNT; i++) {
inline_referrers[i] = nil;
}
}
};
weak_entry_t
是最终存放对象和引用指针的地方,referent
是被引用的对象,联合体union
释义如下
- weak_referrer_t *referrers; 存放引用指针
- uintptr_t out_of_line_ness : 2 标识当前存储是否在初始WEAK_INLINE_COUNT个数之内
- uintptr_t num_refs : PTR_MINUS_2 引用的个数
- uintptr_t mask; 实际分配容量
- uintptr_t max_hash_displacement; 实际使用容量,包括已经被释放的,每次调整容量时会更新重置
- weak_referrer_t inline_referrers[WEAK_INLINE_COUNT]; 当引用个数小于WEAK_INLINE_COUNT时,使用该数组存放。
注册引用过程中,重点关注下面代码:
{
weak_entry_t *entry;
/// 查找是否已经注册过了
if ((entry = weak_entry_for_referent(weak_table, referent))) {
/// 加上去就可以了
append_referrer(entry, referrer);
}
else {
/// 新建一个
weak_entry_t new_entry(referent, referrer);
/// 调整weak_table_t 的容量大小
weak_grow_maybe(weak_table);
/// 插入一个
weak_entry_insert(weak_table, &new_entry);
}
}
新建
通过weak_entry_t
的源码,可以看到新建一个weak_entry_t
的过程是
- 将被引用对象赋予referent
- 将引用指针放入到
inline_referrers
,因为此时数目还很少
调整weak_table_t的容量大小
static void weak_resize(weak_table_t *weak_table, size_t new_size)
{
size_t old_size = TABLE_SIZE(weak_table);
weak_entry_t *old_entries = weak_table->weak_entries;
weak_entry_t *new_entries = (weak_entry_t *)
calloc(new_size, sizeof(weak_entry_t));
weak_table->mask = new_size - 1;
weak_table->weak_entries = new_entries;
/// 重置
weak_table->max_hash_displacement = 0;
weak_table->num_entries = 0; // restored by weak_entry_insert below
if (old_entries) {
weak_entry_t *entry;
weak_entry_t *end = old_entries + old_size;
for (entry = old_entries; entry < end; entry++) {
if (entry->referent) {
weak_entry_insert(weak_table, entry);
}
}
free(old_entries);
}
}
// Grow the given zone's table of weak references if it is full.
static void weak_grow_maybe(weak_table_t *weak_table)
{
size_t old_size = TABLE_SIZE(weak_table);
// Grow if at least 3/4 full.
if (weak_table->num_entries >= old_size * 3 / 4) {
weak_resize(weak_table, old_size ? old_size*2 : 64);
}
}
当实际的数目大于old_size(old_size就是mask的大小+1),就去调整大小,同时重置max_hash_displacement为0,通过calloc函数,动态分配mask个的内存,然后通过循环,将原有的weak_entry_t
插入到新的容器中,在插入的过程中,更新max_hash_displacement.
在weak_table_t
插入weak_entry_t
static void weak_entry_insert(weak_table_t *weak_table, weak_entry_t *new_entry)
{
weak_entry_t *weak_entries = weak_table->weak_entries;
assert(weak_entries != nil);
size_t begin = hash_pointer(new_entry->referent) & (weak_table->mask);
size_t index = begin;
size_t hash_displacement = 0;
while (weak_entries[index].referent != nil) {
index = (index+1) & weak_table->mask;
if (index == begin) bad_weak_table(weak_entries);
hash_displacement++;
}
/// 把新的加进去
weak_entries[index] = *new_entry;
/// 引用计数+1
weak_table->num_entries++;
/// 扩容前最大占位
if (hash_displacement > weak_table->max_hash_displacement) {
weak_table->max_hash_displacement = hash_displacement;
}
}
过程比较简单,也是利用hash处理,方便后面查找。
在weak_table_t
查找对象是通过循环遍历的方式,过程如下
static weak_entry_t *
weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
{
assert(referent);
weak_entry_t *weak_entries = weak_table->weak_entries;
if (!weak_entries) return nil;
size_t begin = hash_pointer(referent) & weak_table->mask; /// 获取hash值
size_t index = begin;
size_t hash_displacement = 0;
/// 循环遍历,查找
while (weak_table->weak_entries[index].referent != referent) {
index = (index+1) & weak_table->mask;
if (index == begin) bad_weak_table(weak_table->weak_entries);
// 查找到最大的时候,结束
hash_displacement++;
if (hash_displacement > weak_table->max_hash_displacement) {
return nil;
}
}
return &weak_table->weak_entries[index];
}
在已有的weak_entry_t
中加入引用
static void append_referrer(weak_entry_t *entry, objc_object **new_referrer)
{
/// 如果是数组,即个数比较少
if (! entry->out_of_line()) {
// Try to insert inline.
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i] == nil) {
entry->inline_referrers[i] = new_referrer;
return;
}
}
// Couldn't insert inline. Allocate out of line.
weak_referrer_t *new_referrers = (weak_referrer_t *)
calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t));
// This constructed table is invalid, but grow_refs_and_insert
// will fix it and rehash it.
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
new_referrers[i] = entry->inline_referrers[i];
}
entry->referrers = new_referrers;
entry->num_refs = WEAK_INLINE_COUNT;
entry->out_of_line_ness = REFERRERS_OUT_OF_LINE;
entry->mask = WEAK_INLINE_COUNT-1;
entry->max_hash_displacement = 0;
}
assert(entry->out_of_line());
if (entry->num_refs >= TABLE_SIZE(entry) * 3/4) {
return grow_refs_and_insert(entry, new_referrer);
}
size_t begin = w_hash_pointer(new_referrer) & (entry->mask);
size_t index = begin;
size_t hash_displacement = 0;
while (entry->referrers[index] != nil) {
hash_displacement++;
index = (index+1) & entry->mask;
if (index == begin) bad_weak_table(entry);
}
if (hash_displacement > entry->max_hash_displacement) {
entry->max_hash_displacement = hash_displacement;
}
weak_referrer_t &ref = entry->referrers[index];
ref = new_referrer;
entry->num_refs++;
}
该过程同在weak_table_t
中插入weak_entry_t
如出一辙,要注意的是需要判断引用的个数,当引用个数大于WEAK_INLINE_COUNT时,需要将原有的引用指针也移到referrers
中,同时更新相关计数器。
上面过程的流程如下:
消除弱引用
消除弱引用过程同注册大致相同,只是部分地方是相反操作,不做赘述了