LeetCode——542. 01 矩阵

给定一个由 0 和 1 组成的矩阵,找出每个元素到最近的 0 的距离。

两个相邻元素间的距离为 1 。

示例 1:
输入:

0 0 0
0 1 0
0 0 0

输出:

0 0 0
0 1 0
0 0 0

示例 2:
输入:

0 0 0
0 1 0
1 1 1

输出:

0 0 0
0 1 0
1 2 1

注意:

  1. 给定矩阵的元素个数不超过 10000。
  2. 给定矩阵中至少有一个元素是 0。
  3. 矩阵中的元素只在四个方向上相邻: 上、下、左、右。

BFS

我们可以首先遍历一次矩阵,将值为0的点都存入queue,将值为1的点改为INT_MAX。

然后开始BFS遍历,从queue中取出一个数字,遍历其周围四个点,如果越界或者周围点的值小于等于当前值加1,则直接跳过。

因为周围点的距离更小的话,就没有更新的必要,否则将周围点的值更新为当前值加1,然后把周围点的坐标加入queue,参见代码如下:

c++

class Solution {
public:
    vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}};
        queue<pair<int, int>> q;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == 0) q.push({i, j});
                else matrix[i][j] = INT_MAX;
            }
        }
        while (!q.empty()) {
            auto t = q.front(); q.pop();
            for (auto dir : dirs) {
                int x = t.first + dir[0], y = t.second + dir[1];
                if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[t.first][t.second] + 1) continue;
                matrix[x][y] = matrix[t.first][t.second] + 1;
                q.push({x, y});
            }
        }
        return matrix;
    }
};

动态规划

首先建立一个和matrix大小相等的矩阵res,初始化为很大的值,这里我们用INT_MAX-1。

然后我们遍历matrix矩阵,当遇到为0的位置,我们将结果res矩阵的对应位置也设为0。

然后就是这个解法的精髓了,如果不是0的地方,我们在第一次扫描的时候,比较其左边和上边的位置,取其中较小的值,再加上1,来更新结果res中的对应位置。

如果初始化为INT_MAX就会整型溢出,不过放心,由于是取较小值,res[i][j]永远不会取到INT_MAX,所以不会有再加1溢出的风险。

第一次遍历我们比较了左和上的方向,那么我们第二次遍历就要比较右和下的方向,注意两种情况下我们不需要比较,一种是当值为0时,还有一种是当值为1时,这两种情况下值都不可能再变小了,所以没有更新的必要,参见代码如下:

c++

class Solution {
public:
    vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        vector<vector<int>> res(m, vector<int>(n, INT_MAX - 1));
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == 0) res[i][j] = 0;
                else {
                    if (i > 0) res[i][j] = min(res[i][j], res[i - 1][j] + 1);
                    if (j > 0) res[i][j] = min(res[i][j], res[i][j - 1] + 1);
                }
            }
        }
        for (int i = m - 1; i >= 0; --i) {
            for (int j = n - 1; j >= 0; --j) {
                if (res[i][j] != 0 && res[i][j] != 1) {
                    if (i < m - 1) res[i][j] = min(res[i][j], res[i + 1][j] + 1);
                    if (j < n - 1) res[i][j] = min(res[i][j], res[i][j + 1] + 1);
                }
            }
        }
        return res;
    }
};

python

class Solution:
    def updateMatrix(self, matrix: List[List[int]]) -> List[List[int]]:
        for i in range(len(matrix)):
            for j in range(len(matrix[0])):
                l,t= 10001,10001
                if matrix[i][j] != 0:
                    if i > 0:
                        t = matrix[i - 1][j]
                    
                    if j > 0:
                        l = matrix[i][j - 1]
                    
                    matrix[i][j] = min(l,t) + 1
        
        for i in range(len(matrix) - 1, -1 ,-1):
            for j in range(len(matrix[0]) - 1, -1, -1):
                r,b = 10001,10001
                if matrix[i][j] != 0:
                    if i < len(matrix) - 1:
                        b = matrix[i + 1][j]

                    if j < len(matrix[0]) - 1:
                        r = matrix[i][j + 1]

                    matrix[i][j] = min(matrix[i][j], min(r,b) + 1)
        return matrix
posted @ 2020-02-08 11:43  小萝卜鸭  阅读(319)  评论(0编辑  收藏  举报