IEEE Trans 2009 Stagewise Weak Gradient Pursuits论文学习
论文在第二部分先提出了贪婪算法框架,如下截图所示:
接着根据原子选择的方法不同,提出了SWOMP(分段弱正交匹配追踪)算法,以下部分为转载《压缩感知重构算法之分段弱正交匹配追踪(SWOMP)》
分段弱正交匹配追踪(StagewiseWeak OMP)可以说是StOMP的一种改进算法,它们的唯一不同是选择原子时的门限设置,这可以降低对测量矩阵的要求。我们称这里的原子选择方式为“弱选择”(Weak Selection),详见文献[1]的第3部分“III. STAGEWISE WEAK ELEMENTSELECTION”。
1 SWOMP重构算法流程
2 分段弱正交匹配追踪(SWOMP)Matlab代码(CS_SWOMP.m)
代码基本与StOMP.m一致,不同之处只是修改了门限,为了测试α=1时的重构效果,门限比较时由StOMP的大于改为了大于等于。
function [ theta ] = CS_SWOMP( y,A,S,alpha )
%CS_SWOMP Summary of this function goes here
%Version: 1.0 written by jbb0523 @2015-05-11
% Detailed explanation goes here
% y = Phi * x
% x = Psi * theta
% y = Phi*Psi * theta
% 令 A = Phi*Psi, 则y=A*theta
% S is the maximum number of SWOMP iterations to perform
% alpha is the threshold parameter
% 现在已知y和A,求theta
% Reference:Thomas Blumensath,Mike E. Davies.Stagewise weak gradient
% pursuits[J].IEEE Transactions on Signal Processing,2009,57(11):4333-4346.
if nargin < 4
alpha = 0.5;%alpha范围(0,1),默认值为0.5
end
if nargin < 3
S = 10;%S默认值为10
end
[y_rows,y_columns] = size(y);
if y_rows<y_columns
y = y';%y should be a column vector
end
[M,N] = size(A);%传感矩阵A为M*N矩阵
theta = zeros(N,1);%用来存储恢复的theta(列向量)
Pos_theta = [];%用来迭代过程中存储A被选择的列序号
r_n = y;%初始化残差(residual)为y
for ss=1:S%最多迭代S次
product = A'*r_n;%传感矩阵A各列与残差的内积
sigma = max(abs(product));
Js = find(abs(product)>=alpha*sigma);%选出大于阈值的列
Is = union(Pos_theta,Js);%Pos_theta与Js并集
if length(Pos_theta) == length(Is)
if ss==1
theta_ls = 0;%防止第1次就跳出导致theta_ls无定义
end
break;%如果没有新的列被选中则跳出循环
end
%At的行数要大于列数,此为最小二乘的基础(列线性无关)
if length(Is)<=M
Pos_theta = Is;%更新列序号集合
At = A(:,Pos_theta);%将A的这几列组成矩阵At
else%At的列数大于行数,列必为线性相关的,At'*At将不可逆
if ss==1
theta_ls = 0;%防止第1次就跳出导致theta_ls无定义
end
break;%跳出for循环
end
%y=At*theta,以下求theta的最小二乘解(Least Square)
theta_ls = (At'*At)^(-1)*At'*y;%最小二乘解
%At*theta_ls是y在At列空间上的正交投影
r_n = y - At*theta_ls;%更新残差
if norm(r_n)<1e-6%Repeat the steps until r=0
break;%跳出for循环
end
end
theta(Pos_theta)=theta_ls;%恢复出的theta
end
3 SWOMP单次重构测试代码
以下测试代码基本与OMP单次重构测试代码一样。代码中“Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵”并不像StOMP一样要求一定要除以sqrt(M),这也是SWOMP对StOMP的最大改进之处。
%压缩感知重构算法测试
clear all;close all;clc;
M = 128;%观测值个数
N = 256;%信号x的长度
K = 30;%信号x的稀疏度
Index_K = randperm(N);
x = zeros(N,1);
x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的
Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵
A = Phi * Psi;%传感矩阵
y = Phi * x;%得到观测向量y
%% 恢复重构信号x
tic
theta = CS_SWOMP( y,A);
x_r = Psi * theta;% x=Psi * theta
toc
%% 绘图
figure;
plot(x_r,'k.-');%绘出x的恢复信号
hold on;
plot(x,'r');%绘出原信号x
hold off;
legend('Recovery','Original')
fprintf('\n恢复残差:');
norm(x_r-x)%恢复残差
运行结果如下:(信号为随机生成,所以每次结果均不一样)
1)图:
2)Command windows
Elapsedtime is 0.093673 seconds.
恢复残差:
ans=
2.9037e-014
4 门限参数α、测量数M与重构成功概率关系曲线绘制例程代码
因为文献[1]中对门限参数α给出的是一个取值范围,所以有必要仿真α取不同值时的重构效果。以下的代码是基于StOMP相应的测试代码修改的,基本结构一样,只是α的测试值共10个,而在StOMP中ts的测试值共6个。
%压缩感知重构算法测试
clear all;close all;clc;
M = 128;%观测值个数
N = 256;%信号x的长度
K = 30;%信号x的稀疏度
Index_K = randperm(N);
x = zeros(N,1);
x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的
Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵
A = Phi * Psi;%传感矩阵 clear all;close all;clc;
%% 参数配置初始化
CNT = 1000;%对于每组(K,M,N),重复迭代次数
N = 256;%信号x的长度
Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
alpha_set = 0.1:0.1:1;
K_set = [4,12,20,28,36];%信号x的稀疏度集合
Percentage = zeros(N,length(K_set),length(alpha_set));%存储恢复成功概率
%% 主循环,遍历每组(alpha,K,M,N)
tic
for tt = 1:length(alpha_set)
alpha = alpha_set(tt);
for kk = 1:length(K_set)
K = K_set(kk);%本次稀疏度
%M没必要全部遍历,每隔5测试一个就可以了
M_set=2*K:5:N;
PercentageK = zeros(1,length(M_set));%存储此稀疏度K下不同M的恢复成功概率
for mm = 1:length(M_set)
M = M_set(mm);%本次观测值个数
fprintf('alpha=%f,K=%d,M=%d\n',alpha,K,M);
P = 0;
for cnt = 1:CNT %每个观测值个数均运行CNT次
Index_K = randperm(N);
x = zeros(N,1);
x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的
Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵
A = Phi * Psi;%传感矩阵
y = Phi * x;%得到观测向量y
theta = CS_SWOMP(y,A,10,alpha);%恢复重构信号theta
x_r = Psi * theta;% x=Psi * theta
if norm(x_r-x)<1e-6%如果残差小于1e-6则认为恢复成功
P = P + 1;
end
end
PercentageK(mm) = P/CNT*100;%计算恢复概率
end
Percentage(1:length(M_set),kk,tt) = PercentageK;
end
end
toc
save SWOMPMtoPercentage1000 %运行一次不容易,把变量全部存储下来
%% 绘图
for tt = 1:length(alpha_set)
S = ['-ks';'-ko';'-kd';'-kv';'-k*'];
figure;
for kk = 1:length(K_set)
K = K_set(kk);
M_set=2*K:5:N;
L_Mset = length(M_set);
plot(M_set,Percentage(1:L_Mset,kk,tt),S(kk,:));%绘出x的恢复信号
hold on;
end
hold off;
xlim([0 256]);
legend('K=4','K=12','K=20','K=28','K=36');
xlabel('Number of measurements(M)');
ylabel('Percentage recovered');
title(['Percentage of input signals recovered correctly(N=256,alpha=',...
num2str(alpha_set(tt)),')(Gaussian)']);
end
for kk = 1:length(K_set)
K = K_set(kk);
M_set=2*K:5:N;
L_Mset = length(M_set);
S = ['-ks';'-ko';'-kd';'-k*';'-k+';'-kx';'-kv';'-k^';'-k<';'-k>'];
figure;
for tt = 1:length(alpha_set)
plot(M_set,Percentage(1:L_Mset,kk,tt),S(tt,:));%绘出x的恢复信号
hold on;
end
hold off;
xlim([0 256]);
legend('alpha=0.1','alpha=0.2','alpha=0.3','alpha=0.4','alpha=0.5',...
'alpha=0.6','alpha=0.7','alpha=0.8','alpha=0.9','alpha=1.0');
xlabel('Number of measurements(M)');
ylabel('Percentage recovered');
title(['Percentage of input signals recovered correctly(N=256,K=',...
num2str(K),')(Gaussian)']);
end
y = Phi * x;%得到观测向量y
%% 恢复重构信号x
tic
theta = CS_SWOMP( y,A);
x_r = Psi * theta;% x=Psi * theta
toc
%% 绘图
figure;
plot(x_r,'k.-');%绘出x的恢复信号
hold on;
plot(x,'r');%绘出原信号x
hold off;
legend('Recovery','Original')
fprintf('\n恢复残差:');
norm(x_r-x)%恢复残差
本程序在联想ThinkPadE430C笔记本(4GBDDR3内存,i5-3210)上运行共耗时8430.877154秒(时间较长,运行时可以干点别的事情了),程序中将所有数据均通过“save SWOMPMtoPercentage1000”存储了下来,以后可以再对数据进行分析,只需“load SWOMPMtoPercentage1000”即可。
程序运行结束会出现10+5=11幅图,前10幅图分别是α分别为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和1.0时的测量数M与重构成功概率关系曲线(类似于OMP此部分,这里只是对每一个不同的α画出一幅图),后5幅图是分别将稀疏度K为4、12、20、28、32时将十种α取值的测量数M与重构成功概率关系曲线绘制在一起以比较α对重构结果的影响。
以下是α分别为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和 1.0时的测量数M与重构成功概率关系曲线:
以下是稀疏度K为4、12、20、28、32时将十种α取值的测量数M与重构成功概率关系曲线放在一起的五幅图: